75 research outputs found

    The origin of large molecules in primordial autocatalytic reaction networks

    Get PDF
    Large molecules such as proteins and nucleic acids are crucial for life, yet their primordial origin remains a major puzzle. The production of large molecules, as we know it today, requires good catalysts, and the only good catalysts we know that can accomplish this task consist of large molecules. Thus the origin of large molecules is a chicken and egg problem in chemistry. Here we present a mechanism, based on autocatalytic sets (ACSs), that is a possible solution to this problem. We discuss a mathematical model describing the population dynamics of molecules in a stylized but prebiotically plausible chemistry. Large molecules can be produced in this chemistry by the coalescing of smaller ones, with the smallest molecules, the `food set', being buffered. Some of the reactions can be catalyzed by molecules within the chemistry with varying catalytic strengths. Normally the concentrations of large molecules in such a scenario are very small, diminishing exponentially with their size. ACSs, if present in the catalytic network, can focus the resources of the system into a sparse set of molecules. ACSs can produce a bistability in the population dynamics and, in particular, steady states wherein the ACS molecules dominate the population. However to reach these steady states from initial conditions that contain only the food set typically requires very large catalytic strengths, growing exponentially with the size of the catalyst molecule. We present a solution to this problem by studying `nested ACSs', a structure in which a small ACS is connected to a larger one and reinforces it. We show that when the network contains a cascade of nested ACSs with the catalytic strengths of molecules increasing gradually with their size (e.g., as a power law), a sparse subset of molecules including some very large molecules can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio

    The interplay of intrinsic and extrinsic bounded noises in genetic networks

    Get PDF
    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a genetic network. The influence of intrinsic and extrinsic noises on genetic networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i)(i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii)(ii) a model of enzymatic futile cycle and (iii)(iii) a genetic toggle switch. In (ii)(ii) and (iii)(iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possibile functional role of bounded noises

    Paracoccidioides brasilinsis-Induced Migration of Dendritic Cells and Subsequent T-Cell Activation in the Lung-Draining Lymph Nodes

    Get PDF
    Paracoccidioidomycosis is a mycotic disease caused by a dimorphic fungus, Paracoccidioides brasiliensis (Pb), that starts with inhalation of the fungus; thus, lung cells such as DC are part of the first line of defense against this microorganism. Migration of DC to the lymph nodes is the first step in initiating T cell responses. The mechanisms involved in resistance to Pb infection are poorly understood, but it is likely that DC play a pivotal role in the induction of effector T cells that control Pb infection. In this study, we showed that after Pb Infection, an important modification of lung DC receptor expression occurred. We observed an increased expression of CCR7 and CD103 on lung DC after infection, as well as MHC-II. After Pb infection, bone marrow-derived DC as well lung DC, migrate to lymph nodes. Migration of lung DC could represent an important mechanism of pathogenesis during PCM infection. In resume our data showed that Pb induced DC migration. Furthermore, we demonstrated that bone marrow-derived DC stimulated by Pb migrate to the lymph nodes and activate a T helper (Th) response. To the best of our knowledge, this is the first reported data showing that Pb induces migration of DC and activate a T helper (Th) response

    Prediction by Promoter Logic in Bacterial Quorum Sensing

    Get PDF
    Quorum-sensing systems mediate chemical communication between bacterial cells, coordinating cell-density-dependent processes like biofilm formation and virulence-factor expression. In the proteobacterial LuxI/LuxR quorum sensing paradigm, a signaling molecule generated by an enzyme (LuxI) diffuses between cells and allosterically stimulates a transcriptional regulator (LuxR) to activate its cognate promoter (pR). By expressing either LuxI or LuxR in positive feedback from pR, these versatile systems can generate smooth (monostable) or abrupt (bistable) density-dependent responses to suit the ecological context. Here we combine theory and experiment to demonstrate that the promoter logic of pR – its measured activity as a function of LuxI and LuxR levels – contains all the biochemical information required to quantitatively predict the responses of such feedback loops. The interplay of promoter logic with feedback topology underlies the versatility of the LuxI/LuxR paradigm: LuxR and LuxI positive-feedback systems show dramatically different responses, while a dual positive/negative-feedback system displays synchronized oscillations. These results highlight the dual utility of promoter logic: to probe microscopic parameters and predict macroscopic phenotype

    Методология синтеза архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки

    Get PDF
    Предложен подход к проектированию архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки в реальном времени, основанный на классификации решаемых функциональных задач на основе методов кластерного анализа и выбранного множества признаков подобия. Разработанный подход позволяет из множества функций системы выделить подобные (по определенным признакам) и объединить их в архитектурные компоненты (унифицированные функциональные модули).Запропоновано підхід до проектування архітектури центру обробки інформації автоматизованої системи моніторингу середовища в реальному часі, що заснований на класифікації функціональних задач на підставі методів кластерного аналізу і обраної множини ознак схожості. Розроблений підхід дозволяє вибрати із множини функцій системи схожі (за певними ознаками) і поєднати їх в архітектурні компоненти (уніфіковані функціональні модулі).The approach to designing architecture of the information processing complex of the automated real time conditions monitoring system based on classification of functional tasks on the basis of methods of cluster analysis and the chosen set of similarity attributes is offered. The developed approach allows to allocate from a set of functions the systems similar (on certain attributes) and to unite them in architectural components (unified functional modules)

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies
    corecore