56 research outputs found

    Identification of novel associations and localization of signals in idiopathic inflammatory myopathies using genome-wide imputation

    Get PDF
    Objective: The idiopathic inflammatory myopathies (IIMs) are heterogeneous diseases thought to be initiated by immune activation in genetically predisposed individuals. We imputed variants from the ImmunoChip array using a large reference panel to fine-map associations and identify novel associations in IIM. Methods: We analyzed 2,565 Caucasian IIM patient samples collected through the Myositis Genetics Consortium (MYOGEN) and 10,260 ethnically matched control samples. We imputed 1,648,116 variants from the ImmunoChip array using the Haplotype Reference Consortium panel and conducted association analysis on IIM and clinical and serologic subgroups. Results: The HLA locus was consistently the most significantly associated region. Four non-HLA regions reached genome-wide significance, SDK2 and LINC00924 (both novel) and STAT4 in the whole IIM cohort, with evidence of independent variants in STAT4, and NAB1 in the polymyositis (PM) subgroup. We also found suggestive evidence of association with loci previously associated with other autoimmune rheumatic diseases (TEC and LTBR). We identified more significant associations than those previously reported in IIM for STAT4 and DGKQ in the total cohort, for NAB1 and FAM167A-BLK loci in PM, and for CCR5 in inclusion body myositis. We found enrichment of variants among DNase I hypersensitivity sites and histone marks associated with active transcription within blood cells. Conclusion: We found novel and strong associations in IIM and PM and localized signals to single genes and immune cell types

    Low copy numbers of complement C4 and C4A deficiency are risk factors for myositis, its subgroups and autoantibodies

    Get PDF
    Background Idiopathic inflammatory myopathies (IIM) are a group of autoimmune diseases characterised by myositis-related autoantibodies plus infiltration of leucocytes into muscles and/or the skin, leading to the destruction of blood vessels and muscle fibres, chronic weakness and fatigue. While complement-mediated destruction of capillary endothelia is implicated in paediatric and adult dermatomyositis, the complex diversity of complement C4 in IIM pathology was unknown. Methods We elucidated the gene copy number (GCN) variations of total C4, C4A and C4B, long and short genes in 1644 Caucasian patients with IIM, plus 3526 matched healthy controls using real-time PCR or Southern blot analyses. Plasma complement levels were determined by single radial immunodiffusion. Results The large study populations helped establish the distribution patterns of various C4 GCN groups. Low GCNs of C4T (C4T=2+3) and C4A deficiency (C4A=0+1) were strongly correlated with increased risk of IIM with OR equalled to 2.58 (2.28-2.91), p=5.0×10 -53 for C4T, and 2.82 (2.48-3.21), p=7.0×10 -57 for C4A deficiency. Contingency and regression analyses showed that among patients with C4A deficiency, the presence of HLA-DR3 became insignificant as a risk factor in IIM except for inclusion body myositis (IBM), by which 98.2% had HLA-DR3 with an OR of 11.02 (1.44-84.4). Intragroup analyses of patients with IIM for C4 protein levels and IIM-related autoantibodies showed that those with anti-Jo-1 or with anti-PM/Scl had significantly lower C4 plasma concentrations than those without these autoantibodies. Conclusions C4A deficiency is relevant in dermatomyositis, HLA-DRB1∗03 is important in IBM and both C4A deficiency and HLA-DRB1∗03 contribute interactively to risk of polymyositis

    Myositis autoantibodies in Korean patients with inflammatory myositis: Anti-140-kDa polypeptide antibody is primarily associated with rapidly progressive interstitial lung disease independent of clinically amyopathic dermatomyositis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the association between myositis autoantibodies and clinical subsets of inflammatory myositis in Korean patients.</p> <p>Methods</p> <p>Immunoprecipitation was performed using the sera of classic polymyositis (PM) (n = 11) and dermatomyositis (DM) (n = 38) patients who met the Bohan and Peter criteria for definite inflammatory myositis. A panel of defined myositis autoantibodies was surveyed to investigate the association between each autoantibody and clinical subsets of inflammatory myositis.</p> <p>Results</p> <p>Either MSAs, anti-p140, or anti-p155/140 antibodies were found in 63.3% (31/49) of the study subjects. Anti-140-kDa-polypeptide (anti-p140) (18.4%, 9/49) and anti-155/140-kDa polypeptide (anti-p155/140) (16.3%, 8/49) antibodies were the most common, followed by anti-Mi2 (14.3%, 7/49), anti-ARS (12.2%, 6/49) and anti-SRP (2.0%, 1/49) antibodies. All MSAs and anti-p140 and anti-p155/140 antibodies were mutually exclusive. Anti-p140 (23.7%, 9/38), anti-p155/140 (21.1%, 8/38), and anti-Mi2 (18.4%, 3/38) antibodies were found exclusively in DM patients. Anti-p140 antibody was associated with rapidly progressive interstitial lung disease (ILD) (p = 0.001), with a sensitivity of 100.0% (4/4) and a specificity of 85.3% (29/34) in DM patients. Anti-p155/140 antibody was associated with cancer-associated DM (p = 0.009), with a sensitivity of 55.6% (5/9) and a specificity of 89.7% (26/29). Cancer-associated survival was significantly worse when anti-p155/140 antibody was present (19.2 ± 7.6 vs. 65.0 ± 3.5 months, p = 0.032). Finally, anti-ARS antibodies were associated with stable or slowly progressive ILD in PM and DM patients (p = 0.005).</p> <p>Conclusions</p> <p>Anti-p140 and anti-p155/140 antibodies were commonly found autoantibodies in Korean patients with inflammatory myositis. Despite the lack of clinically amyopathic DM patients in the study subjects, a strong association was observed between anti-p140 antibody and rapidly progressive ILD. Anti-p155/140 antibody was associated with cancer-associated myositis and poor survival.</p

    The gene structure and expression of human ABHD1: overlapping polyadenylation signal sequence with Sec12

    Get PDF
    BACKGROUND: Overlapping sense/antisense genes orientated in a tail-to-tail manner, often involving only the 3'UTRs, form the majority of gene pairs in mammalian genomes and can lead to the formation of double-stranded RNA that triggers the destruction of homologous mRNAs. Overlapping polyadenylation signal sequences have not been described previously. RESULTS: An instance of gene overlap has been found involving a shared single functional polyadenylation site. The genes involved are the human alpha/beta hydrolase domain containing gene 1 (ABHD1) and Sec12 genes. The nine exon human ABHD1 gene is located on chromosome 2p23.3 and encodes a 405-residue protein containing a catalytic triad analogous to that present in serine proteases. The Sec12 protein promotes efficient guanine nucleotide exchange on the Sar1 GTPase in the ER. Their sequences overlap for 42 bp in the 3'UTR in an antisense manner. Analysis by 3' RACE identified a single functional polyadenylation site, ATTAAA, within the 3'UTR of ABHD1 and a single polyadenylation signal, AATAAA, within the 3'UTR of Sec12. These polyadenylation signals overlap, sharing three bp. They are also conserved in mouse and rat. ABHD1 was expressed in all tissues and cells examined, but levels of ABHD1 varied greatly, being high in skeletal muscle and testis and low in spleen and fibroblasts. CONCLUSIONS: Mammalian ABHD1 and Sec12 genes contain a conserved 42 bp overlap in their 3'UTR, and share a conserved TTTATTAAA/TTTAATAAA sequence that serves as a polyadenylation signal for both genes. No inverse correlation between the respective levels of ABHD1 and Sec12 RNA was found to indicate that any RNA interference occurred

    Interferon and Biologic Signatures in Dermatomyositis Skin: Specificity and Heterogeneity across Diseases

    Get PDF
    BACKGROUND: Dermatomyositis (DM) is an autoimmune disease that mainly affects the skin, muscle, and lung. The pathogenesis of skin inflammation in DM is not well understood. METHODOLOGY AND FINDINGS: We analyzed genome-wide expression data in DM skin and compared them to those from healthy controls. We observed a robust upregulation of interferon (IFN)-inducible genes in DM skin, as well as several other gene modules pertaining to inflammation, complement activation, and epidermal activation and differentiation. The interferon (IFN)-inducible genes within the DM signature were present not only in DM and lupus, but also cutaneous herpes simplex-2 infection and to a lesser degree, psoriasis. This IFN signature was absent or weakly present in atopic dermatitis, allergic contact dermatitis, acne vulgaris, systemic sclerosis, and localized scleroderma/morphea. We observed that the IFN signature in DM skin appears to be more closely related to type I than type II IFN based on in vitro IFN stimulation expression signatures. However, quantitation of IFN mRNAs in DM skin shows that the majority of known type I IFNs, as well as IFN g, are overexpressed in DM skin. In addition, both IFN-beta and IFN-gamma (but not other type I IFN) transcript levels were highly correlated with the degree of the in vivo IFN transcriptional response in DM skin. CONCLUSIONS AND SIGNIFICANCE: As in the blood and muscle, DM skin is characterized by an overwhelming presence of an IFN signature, although it is difficult to conclusively define this response as type I or type II. Understanding the significance of the IFN signature in this wide array of inflammatory diseases will be furthered by identification of the nature of the cells that both produce and respond to IFN, as well as which IFN subtype is biologically active in each diseased tissue

    Focused HLA analysis in Caucasians with myositis identifies significant associations with autoantibody subgroups

    Get PDF
    OBJECTIVES: Idiopathic inflammatory myopathies (IIM) are a spectrum of rare autoimmune diseases characterised clinically by muscle weakness and heterogeneous systemic organ involvement. The strongest genetic risk is within the major histocompatibility complex (MHC). Since autoantibody presence defines specific clinical subgroups of IIM, we aimed to correlate serotype and genotype, to identify novel risk variants in the MHC region that co-occur with IIM autoantibodies. METHODS: We collected available autoantibody data in our cohort of 2582 Caucasian patients with IIM. High resolution human leucocyte antigen (HLA) alleles and corresponding amino acid sequences were imputed using SNP2HLA from existing genotyping data and tested for association with 12 autoantibody subgroups. RESULTS: We report associations with eight autoantibodies reaching our study-wide significance level of p<2.9×10^{-5}. Associations with the 8.1 ancestral haplotype were found with anti-Jo-1 (HLA-B*08:01, p=2.28×10^{-53}  and HLA-DRB1*03:01, p=3.25×10^{-9}, anti-PM/Scl (HLA-DQB1*02:01, p=1.47×10^{-26}) and anti-cN1A autoantibodies (HLA-DRB1*03:01, p=1.40×10^{-11}). Associations independent of this haplotype were found with anti-Mi-2 (HLA-DRB1*07:01, p=4.92×10^{-13}) and anti-HMGCR autoantibodies (HLA-DRB1*11, p=5.09×10^{-6}). Amino acid positions may be more strongly associated than classical HLA associations; for example with anti-Jo-1 autoantibodies and position 74 of HLA-DRB1 (p=3.47×10^{-64} and position 9 of HLA-B (p=7.03×10^{-11}). We report novel genetic associations with HLA-DQB1 anti-TIF1 autoantibodies and identify haplotypes that may differ between adult-onset and juvenile-onset patients with these autoantibodies. CONCLUSIONS: These findings provide new insights regarding the functional consequences of genetic polymorphisms within the MHC. As autoantibodies in IIM correlate with specific clinical features of disease, understanding genetic risk underlying development of autoantibody profiles has implications for future research

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]&lt;2.20(2.56) and Γ[Ξb(6333)0]&lt;1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    Observation of a resonant structure near the Ds+Ds−D_s^+ D_s^- threshold in the B+→Ds+Ds−K+B^+\to D_s^+ D_s^- K^+ decay

    Get PDF
    An amplitude analysis of the B+→Ds+Ds−K+B^+\to D_s^+ D_s^- K^+ decay is carried out to study for the first time its intermediate resonant contributions, using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. A near-threshold peaking structure, referred to as X(3960)X(3960), is observed in the Ds+Ds−D_s^+ D_s^- invariant-mass spectrum with significance greater than 12 standard deviations. The mass, width and the quantum numbers of the structure are measured to be 3956±5±103956\pm5\pm10 MeV, 43±13±843\pm13\pm8 MeV and JPC=0++J^{PC}=0^{++}, respectively, where the first uncertainties are statistical and the second systematic. The properties of the new structure are consistent with recent theoretical predictions for a state composed of ccˉssˉc\bar{c}s\bar{s} quarks. Evidence for an additional structure is found around 4140 MeV in the Ds+Ds−D_s^+ D_s^- invariant mass, which might be caused either by a new resonance with the 0++0^{++} assignment or by a J/ψϕ↔Ds+Ds−J/\psi \phi\leftrightarrow D_s^+ D_s^- coupled-channel effect.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-018.html (LHCb public pages

    Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases

    Get PDF
    OBJECTIVE: Immune-mediated inflammatory diseases (IMIDs) are heterogeneous and complex conditions with overlapping clinical symptoms and elevated familial aggregation, which suggests the existence of a shared genetic component. In order to identify this genetic background in a systematic fashion, we performed the first cross-disease genome-wide meta-analysis in systemic seropositive rheumatic diseases, namely, systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis and idiopathic inflammatory myopathies. METHODS: We meta-analysed ~6.5 million single nucleotide polymorphisms in 11 678 cases and 19 704 non-affected controls of European descent populations. The functional roles of the associated variants were interrogated using publicly available databases. RESULTS: Our analysis revealed five shared genome-wide significant independent loci that had not been previously associated with these diseases: NAB1, KPNA4-ARL14, DGQK, LIMK1 and PRR12. All of these loci are related with immune processes such as interferon and epidermal growth factor signalling, response to methotrexate, cytoskeleton dynamics and coagulation cascade. Remarkably, several of the associated loci are known key players in autoimmunity, which supports the validity of our results. All the associated variants showed significant functional enrichment in DNase hypersensitivity sites, chromatin states and histone marks in relevant immune cells, including shared expression quantitative trait loci. Additionally, our results were significantly enriched in drugs that are being tested for the treatment of the diseases under study. CONCLUSIONS: We have identified shared new risk loci with functional value across diseases and pinpoint new potential candidate loci that could be further investigated. Our results highlight the potential of drug repositioning among related systemic seropositive rheumatic IMIDs

    Precise determination of the B-s(0)-B-s(-0) oscillation frequency

    Get PDF
    Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-005.html (LHCb public pages
    • 

    corecore