55 research outputs found

    Assessment of ePrescription quality: an observational study at three mail-order pharmacies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The introduction of electronic transfer of prescriptions (ETP) or ePrescriptions in ambulatory health care has been suggested to have a positive impact on the prescribing and dispensing processes. Thereby, implying that ePrescribing can improve safety, quality, efficiency, and cost-effectiveness. In December 2007, 68% of all new prescriptions were transferred electronically in Sweden. The aim of the present study was to assess the quality of ePrescriptions by comparing the proportions of ePrescriptions and non-electronic prescriptions necessitating a clarification contact (correction, completion or change) with the prescriber at the time of dispensing.</p> <p>Methods</p> <p>A direct observational study was performed at three Swedish mail-order pharmacies which were known to dispense a large proportion of ePrescriptions (38–75%). Data were gathered on all ePrescriptions dispensed at these pharmacies over a three week period in February 2006. All clarification contacts with prescribers were included in the study and were classified and assessed in comparison with all drug prescriptions dispensed at the same pharmacies over the specified period.</p> <p>Results</p> <p>Of the 31225 prescriptions dispensed during the study period, clarification contacts were made for 2.0% (147/7532) of new ePrescriptions and 1.2% (79/6833) of new non-electronic prescriptions. This represented a relative risk (RR) of 1.7 (95% CI 1.3–2.2) for new ePrescriptions compared to new non-electronic prescriptions. The increased RR was mainly due to 'Dosage and directions for use', which had an RR of 7.6 (95% CI 2.8–20.4) when compared to other clarification contacts. In all, 89.5% of the suggested pharmacist interventions were accepted by the prescriber, 77.7% (192/247) as suggested and an additional 11.7% (29/247) after a modification during contact with the prescriber.</p> <p>Conclusion</p> <p>The increased proportion of prescriptions necessitating a clarification contact for new ePrescriptions compared to new non-electronic prescriptions indicates the need for an increased focus on quality aspects in ePrescribing deployment. ETP technology should be developed towards a two-way communication between the prescriber and the pharmacist with automated checks of missing, inaccurate, or ambiguous information. This would enhance safety and quality for the patient and also improve efficiency and cost-effectiveness within the health care system.</p

    MoSfl1 Is Important for Virulence and Heat Tolerance in Magnaporthe oryzae

    Get PDF
    The formation of appressoria, specialized plant penetration structures of Magnaporthe oryzae, is regulated by the MST11-MST7-PMK1 MAP kinase cascade. One of its downstream transcription factor, MST12, is important for penetration and invasive growth but dispensable for appressorium formation. To identify additional downstream targets that are regulated by Pmk1, in this study we performed phosphorylation assays with a protein microarray composed of 573 M. oryzae transcription factor (TF) genes. Three of the TF genes phosphorylated by Pmk1 in vitro were further analyzed by coimmunoprecipitation assays. One of them, MoSFL1, was found to interact with Pmk1 in vivo. Like other Sfl1 orthologs, the MoSfl1 protein has the HSF-like domain. When expressed in yeast, MoSFL1 functionally complemented the flocculation defects of the sfl1 mutant. In M. oryzae, deletion of MoSFl1 resulted in a significant reduction in virulence on rice and barley seedlings. Consistent with this observation, the Mosfl1 mutant was defective in invasive growth in penetration assays with rice leaf sheaths. In comparison with that of vegetative hyphae, the expression level of MoSFL1 was increased in appressoria and infected rice leaves. The Mosfl1 mutant also had increased sensitivity to elevated temperatures. In CM cultures of the Mosfl1 and pmk1 mutants grown at 30°C, the production of aerial hyphae and melanization were reduced but their growth rate was not altered. When assayed by qRT-PCR, the transcription levels of the MoHSP30 and MoHSP98 genes were reduced 10- and 3-fold, respectively, in the Mosfl1 mutant. SFL1 orthologs are conserved in filamentous ascomycetes but none of them have been functionally characterized in non-Saccharomycetales fungi. MoSfl1 has one putative MAPK docking site and three putative MAPK phosphorylation sites. Therefore, it may be functionally related to Pmk1 in the regulation of invasive growth and stress responses in M. oryzae

    Solar Neutrino Detection Sensitivity in DARWIN via Electron Scattering

    Get PDF
    We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp, 7Be, 13N, 15O and pep. The precision of the 13N, 15O and pep components is hindered by the double-beta decay of 136Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, sin2Ξw, and the electron-type neutrino survival probability, Pee, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and 7Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1–2.5σ significance, independent of external measurements from other experiments or a measurement of 8B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of 131Xe

    Die Stoffwechselwirkungen der SchilddrĂŒsenhormone

    Get PDF

    Defective proliferation and osteogenic potential with altered immunoregulatory phenotype of native bone marrow-multipotential stromal cells in atrophic fracture non-union

    Get PDF
    Bone marrow-Multipotential stromal cells (BM-MSCs) are increasingly used to treat complicated fracture healing e.g., non-union. Though, the quality of these autologous cells is not well characterized. We aimed to evaluate bone healing-related capacities of non-union BM-MSCs. Iliac crest-BM was aspirated from long-bone fracture patients with normal healing (U) or non-united (NU). Uncultured (native) CD271highCD45low cells or passage-zero cultured BM-MSCs were analyzed for gene expression levels, and functional assays were conducted using culture-expanded BM-MSCs. Blood samples were analyzed for serum cytokine levels. Uncultured NU-CD271highCD45low cells significantly expressed fewer transcripts of growth factor receptors, EGFR, FGFR1, and FGRF2 than U cells. Significant fewer transcripts of alkaline phosphatase (ALPL), osteocalcin (BGLAP), osteonectin (SPARC) and osteopontin (SPP1) were detected in NU-CD271highCD45low cells. Additionally, immunoregulation-related markers were differentially expressed between NU- and U-CD271highCD45low cells. Interestingly, passage-zero NU BM-MSCs showed low expression of immunosuppressive mediators. However, culture-expanded NU and U BM-MSCs exhibited comparable proliferation, osteogenesis, and immunosuppression. Serum cytokine levels were found similar for NU and U groups. Collectively, native NU-BM-MSCs seemed to have low proliferative and osteogenic capacities; therefore, enhancing their quality should be considered for regenerative therapies. Further research on distorted immunoregulatory molecules expression in BM-MSCs could potentially benefit the prediction of complicated fracture healing

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector

    Outpatient Prescribing Errors and the Impact of Computerized Prescribing

    No full text
    BACKGROUND: Medication errors are common among inpatients and many are preventable with computerized prescribing. Relatively little is known about outpatient prescribing errors or the impact of computerized prescribing in this setting. OBJECTIVE: To assess the rates, types, and severity of outpatient prescribing errors and understand the potential impact of computerized prescribing. DESIGN: Prospective cohort study in 4 adult primary care practices in Boston using prescription review, patient survey, and chart review to identify medication errors, potential adverse drug events (ADEs) and preventable ADEs. PARTICIPANTS: Outpatients over age 18 who received a prescription from 24 participating physicians. RESULTS: We screened 1879 prescriptions from 1202 patients, and completed 661 surveys (response rate 55%). Of the prescriptions, 143 (7.6%; 95% confidence interval (CI) 6.4% to 8.8%) contained a prescribing error. Three errors led to preventable ADEs and 62 (43%; 3% of all prescriptions) had potential for patient injury (potential ADEs); 1 was potentially life-threatening (2%) and 15 were serious (24%). Errors in frequency (n=77, 54%) and dose (n=26, 18%) were common. The rates of medication errors and potential ADEs were not significantly different at basic computerized prescribing sites (4.3% vs 11.0%, P=.31; 2.6% vs 4.0%, P=.16) compared to handwritten sites. Advanced checks (including dose and frequency checking) could have prevented 95% of potential ADEs. CONCLUSIONS: Prescribing errors occurred in 7.6% of outpatient prescriptions and many could have harmed patients. Basic computerized prescribing systems may not be adequate to reduce errors. More advanced systems with dose and frequency checking are likely needed to prevent potentially harmful errors
    • 

    corecore