84 research outputs found

    The decline in stomach cancer mortality: exploration of future trends in seven European countries

    Get PDF
    Mortality from stomach cancer has fallen steadily during the past decades. The aim of this paper is to assess the implication of a possible continuation of the decline in stomach cancer mortality until the year 2030. Annual rates of decline in stomach cancer mortality from 1980 to 2005 were determined for the Netherlands, United Kingdom, France, and four Nordic countries on the basis of regression analysis. Mortality rates were extrapolated until 2030, assuming the same rate of decline as in the past, using three possible scenarios. The absolute numbers of deaths were projected taking into account data on the ageing of national populations. Stomach cancer mortality rates declined between 1980 and 2005 at about the same rate (3.6–4.9% per year) for both men and women in all countries. The rate of decline did not level off in recent years, and it was not smaller in countries with lower overall mortality rates in 1980. If this decline were to continue into the future, stomach cancer mortality rates would decline with about 66% between 2005 and 2030 in most populations, while the absolute number of stomach cancer deaths would diminish by about 50%. Thus, in view of the strong, stable and consistent mortality declines in recent decades, and despite population ageing, stomach cancer is likely to become far less important as a cause of death in Europe in the future

    Systemic treatment with pulsed electromagnetic fields do not affect bone microarchitecture in osteoporotic rats

    Get PDF
    Purpose: Pulsed electromagnetic fields (PEMF) are currently used in the treatment of spinal fusions and non-unions. There are indications that PEMF might also be effective in the treatment of osteoporosis. In this study we examined whether whole-body PEMF treatment affects the bone microarchitecture in an osteoporotic rat model. Methods: Twenty-week-old female rats were ovariectomised (n020). Four different PEMF treatment protocols based on previous experimental studies and based on clinically used PEMF signals were examined (2 h/day, 5 days/week). A control group did not receive PEMF. At zero, three and six weeks cancellous and cortical bone architectural changes at the proximal tibia were evaluated using in vivo microCT scanning. Results: PEMF treatment did not induce any changes in cancellous or cortical bone compared to untreated controls. Conclusions: Although previous studies have shown strong effects of PEMF in osteoporosis we were unable to demonstrate this in any of the treatment protocols. Using in vivo microCT scanning we were able to identify small bone changes in time. Subtle differences in the experimental setup might explain the differences in study outcomes in the literature. Since PEMF treatment is safe, future experimental studies on the effect of PEMF on bone can better be performed directly on humans, eliminating the potential translation issues between animals and humans. In this study we found no support for the use of PEMF in the treatment of osteoporosis

    Iron Biogeochemistry in the High Latitude North Atlantic Ocean

    Get PDF
    Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world’s ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (<0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250–300 km. Particulate Fe formed the dominant pool, as evidenced by 4–17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m−2 d−1) was at least ca. 4–10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes

    Randomized phase II – study evaluating EGFR targeting therapy with Cetuximab in combination with radiotherapy and chemotherapy for patients with locally advanced pancreatic cancer – PARC: study protocol [ISRCTN56652283]

    Get PDF
    BACKGROUND: Pancreatic cancer is the fourth commonest cause of death from cancer in men and women. Advantages in surgical techniques, radiation therapy techniques, chemotherapeutic regimes, and different combined-modality approaches have yielded only a modest impact on the prognosis of patients with pancreatic cancer. Thus there is clearly a need for additional strategies. One approach involves using the identification of a number of molecular targets that may be responsible for the resistance of cancer cells to radiation or to other cytotoxic agents. As such, these molecular determinants may serve as targets for augmentation of the radiotherapy or chemotherapy response. Of these, the epidermal growth factor receptor (EGFR) has been a molecular target of considerable interest and investigation, and there has been a tremendous surge of interest in pursuing targeted therapy of cancers via inhibition of the EGFR. METHODS/DESIGN: The PARC study is designed as an open, controlled, prospective, randomized phase II trial. Patients in study arm A will be treated with chemoradiation using intensity modulated radiation therapy (IMRT) combined with gemcitabine and simultaneous cetuximab infusions. After chemoradiation the patients receive gemcitabine infusions weekly over 4 weeks. Patients in study arm B will be treated with chemoradiation using intensity modulated radiation therapy (IMRT) combined with gemcitabine and simultaneous cetuximab infusions. After chemoradiation the patients receive gemcitabine weekly over 4 weeks and cetuximab infusions over 12 weeks. A total of 66 patients with locally advanced adenocarcinoma of the pancreas will be enrolled. An interim analysis for patient safety reasons will be done one year after start of recruitment. Evaluation of the primary endpoint will be performed two years after the last patient's enrolment. DISCUSSION: The primary objective of this study is to evaluate the feasibility and the toxicity profile of trimodal therapy in pancreatic adenocarcinoma with chemoradiation therapy with gemcitabine and intensity modulated radiation therapy (IMRT) and EGFR-targeted therapy using cetuximab and to compare between two different methods of cetuximab treatment schedules (concomitant versus concomitant and sequential cetuximab treatment). Secondary objectives are to determine the role and the mechanism of cetuximab in patient's chemoradiation regimen, the response rate, the potential of this combined modality treatment to concert locally advanced lesions to potentially resectable lesions, the time to progression interval and the quality of life

    Inhibitors of Bcl-2 protein family deplete ER Ca2+ stores in pancreatic acinar cells

    Get PDF
    Physiological stimulation of pancreatic acinar cells by cholecystokinin and acetylcholine activate a spatial-temporal pattern of cytosolic [Ca+2] changes that are regulated by a coordinated response of inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs) and calcium-induced calcium release (CICR). For the present study, we designed experiments to determine the potential role of Bcl-2 proteins in these patterns of cytosolic [Ca+2] responses. We used small molecule inhibitors that disrupt the interactions between prosurvival Bcl-2 proteins (i.e. Bcl-2 and Bcl-xl) and proapoptotic Bcl-2 proteins (i.e. Bax) and fluorescence microfluorimetry techniques to measure both cytosolic [Ca+2] and endoplasmic reticulum [Ca+2]. We found that the inhibitors of Bcl-2 protein interactions caused a slow and complete release of intracellular agonist-sensitive stores of calcium. The release was attenuated by inhibitors of IP3Rs and RyRs and substantially reduced by strong [Ca2+] buffering. Inhibition of IP3Rs and RyRs also dramatically reduced activation of apoptosis by BH3I-2′. CICR induced by different doses of BH3I-2′ in Bcl-2 overexpressing cells was markedly decreased compared with control. The results suggest that Bcl-2 proteins regulate calcium release from the intracellular stores and suggest that the spatial-temporal patterns of agonist-stimulated cytosolic [Ca+2] changes are regulated by differential cellular distribution of interacting pairs of prosurvival and proapoptotic Bcl-2 proteins

    The reliability, validity and sensitivity of a novel soccer-specific reactive repeated-sprint test (RRST).

    Get PDF
    PURPOSE: The aim of this study was to determine the reliability, validity and sensitivity of a reactive repeated-sprint test (RRST). METHODS: Elite (n = 72) and sub-elite male (n = 87) and elite female soccer players (n = 12) completed the RRST at set times during a season. Total distance timed was 30 m and the RRST performance measure was the total time (s) across eight repetitions. Competitive match running performance was measured using GPS and high-intensity running quantified (≥ 19.8 km h(-1)). RESULTS: Test-retest coefficient of variation in elite U16 and sub-elite U19 players was 0.71 and 0.84 %, respectively. Elite U18 players' RRST performances were better (P < 0.01) than elite U16, sub-elite U16, U18, U19 and elite senior female players (58.25 ± 1.34 vs 59.97 ± 1.64, 61.42 ± 2.25, 61.66 ± 1.70, 61.02 ± 2.31 and 63.88 ± 1.46 s; ES 0.6-1.9). For elite U18 players, RRST performances for central defenders (59.84 ± 1.35 s) were lower (P < 0.05) than full backs (57.85 ± 0.77 s), but not attackers (58.17 ± 1.73 s) or central and wide midfielders (58.55 ± 1.08 and 58.58 ± 1.89 s; ES 0.7-1.4). Elite U16 players demonstrated lower (P < 0.01) RRST performances during the preparation period versus the start, middle and end of season periods (61.13 ± 1.53 vs 59.51 ± 1.39, 59.25 ± 1.42 and 59.20 ± 1.57 s; ES 1.0-1.1). Very large magnitude correlations (P < 0.01) were observed between RRST performance and high-intensity running in the most intense 5-min period of a match for both elite and sub-elite U18 players (r = -0.71 and -0.74), with the best time of the RRST also correlating with the arrowhead agility test for elite U16 and U18 players (r = 0.84 and 0.75). CONCLUSION: The data demonstrate that the RRST is a reliable and valid test that distinguishes between performance across standard, position and seasonal period

    Luminescence characteristics of quartz from Brazilian sediments and constraints for OSL dating

    Get PDF
    This study analyzes the optically stimulated luminescence (OSL) characteristics of quartz grains from fluvial, eolian and shallow marine sands of northeastern and southeastern Brazil, with especial focus on the applicability of the single-aliquot regenerative dose (SAR) dating protocol. All analyzed Brazilian sediments presented relatively high OSL sensitivity and good behavior regarding their luminescence characteristics relevant for radiation dose estimation. However, some samples from the Lençóis Maranhenses region in northeastern Brazil showed inadequate OSL sensitivity correction, hampering the implementation of the SAR protocol and their ability to behave as a natural dosimeter. While the shallow marine and eolian samples showed a narrow and reliable dose distribution, the fluvial sample had a wide dose distribution, suggesting incomplete bleaching and natural doses estimates dependent on age models

    In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography

    Get PDF
    Development of hypoxia-targeted therapies has stimulated the search for clinically applicable noninvasive markers of tumour hypoxia. Here, we describe the validation of [18F]fluoroetanidazole ([18F]FETA) as a tumour hypoxia marker by positron emission tomography (PET). Cellular transport and retention of [18F]FETA were determined in vitro under air vs nitrogen. Biodistribution and metabolism of the radiotracer were determined in mice bearing MCF-7, RIF-1, EMT6, HT1080/26.6, and HT1080/1-3C xenografts. Dynamic PET imaging was performed on a dedicated small animal scanner. [18F]FETA, with an octanol–water partition coefficient of 0.16±0.01, was selectively retained by RIF-1 cells under hypoxia compared to air (3.4- to 4.3-fold at 60–120 min). The radiotracer was stable in the plasma and distributed well to all the tissues studied. The 60-min tumour/muscle ratios positively correlated with the percentage of pO2 values <5 mmHg (r=0.805, P=0.027) and carbogen breathing decreased [18F]FETA-derived radioactivity levels (P=0.028). In contrast, nitroreductase activity did not influence accumulation. Tumours were sufficiently visualised by PET imaging within 30–60 min. Higher fractional retention of [18F]FETA in HT1080/1-3C vs HT1080/26.6 tumours determined by dynamic PET imaging (P=0.05) reflected higher percentage of pO2 values <1 mmHg (P=0.023), lower vessel density (P=0.026), and higher radiobiological hypoxic fraction (P=0.008) of the HT1080/1-3C tumours. In conclusion, [18F]FETA shows hypoxia-dependent tumour retention and is, thus, a promising PET marker that warrants clinical evaluation

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore