81 research outputs found

    Sensitivity analysis of the input parameters of a physical based ductile failure model of Ti-6Al-4V for the prediction of surface integrity

    Get PDF
    In machining of Ti-6Al-4V, it is commonly reported the appearance of segmented chip produced by adiabatic shearing (at high cutting speeds) and lack of ductility (at low cutting speeds). Moreover, machining is a manufacturing process that is based on applying external energy to the workpiece to produce a separation of a material layer. Thus, to analyze the physics involved in the new surface generation and in the chip segmentation process, it is necessary to apply ductile failure models. However, the characterization of fracture models in machining conditions (temperature, strain rate, stress triaxiality, Lode angle etc.) is an arduous task. Therefore, to define a ductile failure model applicable to machining it is almost inevitable to apply inverse simulations strategies to obtain reliable results in the not tested conditions. Nevertheless, there is few information about the influence of the input parameters of ductile failure model in fundamental outputs and even less in surface integrity aspects. The aim of this research was to conduct a sensitivity analysis of the influence of the input parameters of a physical based ductile failure model not only in fundamental variables (forces, temperatures and chip morphology) but also on surface integrity (surface drag). To this end, a subroutine was developed for the ductile failure model and it was implemented in the Finite Element Method (FEM) software AdvantEdge. Subsequently, using a statistical software and the Design of Experiments (DOE) technique the influence of the input parameters of the failure model on the outputs was analyzed

    Revisiting flow stress modelling for simulating chip formation of carbon and low alloy steels

    Get PDF
    In previous papers the present author has successfully predicted chip formation in machining carbon steels with a model that supposes all carbon steels to have the same flow stress thermal softening and a temperature independent strain rate hardening but to be characterized by individual strain hardening behaviours. It has been necessary to suppose thermal softening to be shifted to higher temperatures than observed experimentally. It is now found alternatively that the thermal softening shift is not required if it is supposed that the strain rate hardening increases slightly in proportion to temperature at temperatures greater than 600°C. The new model results are illustrated and compared to experiment for the low alloy steel BS970:708M40. The relation between flow stress and friction modelling is also discussed

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis

    Get PDF
    Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations

    Evaluation of different flow stress laws coupled with a physical based ductile failure criterion for the modelling of the chip formation process of Ti-6Al-4V under broaching conditions

    Get PDF
    During the machining of Ti-6Al-4V the changing deformation mechanisms produce a complex microstructure of segmented chips, which directly influenced tool-wear and process stability. Numerical simulation could give an insight into the physical phenomena involved in chip segmentation, but its accuracy is directly related to the reliability of the input parameters. In this work, therefore, three different flow stress law were evaluated coupled with a physical based ductile failure criterion, which depends on stress triaxiality and temperature. To this end, the flow stress laws were implemented in the finite element software AdvantEdge by programming user-defined subroutines. The resulting FEM models were compared with orthogonal cutting experimental tests (tubular/linear), analyzing different fundamental outputs (machining forces, temperatures in the workpiece and chip morphology). All the FEM models showed good agreement with the experimental results

    Manufacturing at double the speed

    Get PDF
    The speed of manufacturing processes today depends on a trade-off between the physical processes of production, the wider system that allows these processes to operate and the co-ordination of a supply chain in the pursuit of meeting customer needs. Could the speed of this activity be doubled? This paper explores this hypothetical question, starting with examination of a diverse set of case studies spanning the activities of manufacturing. This reveals that the constraints on increasing manufacturing speed have some common themes, and several of these are examined in more detail, to identify absolute limits to performance. The physical processes of production are constrained by factors such as machine stiffness, actuator acceleration, heat transfer and the delivery of fluids, and for each of these, a simplified model is used to analyse the gap between current and limiting performance. The wider systems of production require the co-ordination of resources and push at the limits of human biophysical and cognitive limits. Evidence about these is explored and related to current practice. Out of this discussion, five promising innovations are explored to show examples of how manufacturing speed is increasing ? with line arrays of point actuators, parallel tools, tailored application of precision, hybridisation and task taxonomies. The paper addresses a broad question which could be pursued by a wider community and in greater depth, but even this first examination suggests the possibility of unanticipated innovations in current manufacturing practices

    State-dependent distributed-delay model of orthogonal cutting

    Get PDF
    In this paper we present a model of turning operations with state-dependent distributed time delay. We apply the theory of regenerative machine tool chat- ter and describe the dynamics of the tool-workpiece sys- tem during cutting by delay-diferential equations. We model the cutting-force as the resultant of a force sys- tem distributed along the rake face of the tool, which results in a short distributed delay in the governing equation superimposed on the large regenerative de- lay. According to the literature on stress distribution along the rake face, the length of the chip-tool inter- face, where the distributed cutting-force system is act- ing, is function of the chip thickness, which depends on the vibrations of the tool-workpiece system due to the regenerative efect. Therefore, the additional short de- lay is state-dependent. It is shown that involving state- dependent delay in the model does not afect linear sta- bility properties, but does afect the nonlinear dynamics of the cutting process. Namely, the sense of the Hopf bi- furcation along the stability boundaries may turn from sub- to supercritical at certain spindle speed regions

    Behaviour of a biocompatible titanium alloy during orthogonal micro-cutting employing green machining techniques

    Get PDF
    The sustainability of a process is the objective of modern industries aiming to reduce waste in production, since consumers require high quality and efficiency with fair price. Thus, a good understanding of the process should be its starting point. The manufacture of dental implants is an example in which waste reduction is important for the reduction of prices due to the demand for great quality and accuracy. This study observed the behaviour of sustainable micro-cutting applied to the Ti-6Al-7Nb titanium alloy, considering the ploughing effect on minimum quantity lubrication (MQL) and high-speed machining (HSM) conditions. When compared with dry condition and low-speed cutting in orthogonal micro-cutting, the use of HSM in dry cutting was more efficient than using MQL. The dry condition presented lower surface roughness, whilst the cooled/lubricated condition presented lower burr formation.publishe

    Wood machining with a focus on French research in the last 50 years

    Full text link
    • …
    corecore