1,354 research outputs found

    Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots

    Get PDF
    Several widespread changes in the ecology of old-growth tropical forests have recently been documented for the late twentieth century, in particular an increase in stem turnover (pan-tropical), and an increase in above-ground biomass (neotropical). Whether these changes are synchronous and whether changes in growth are also occurring is not known. We analysed stand-level changes within 50 long-term. monitoring plots from across South America spanning 1971-2002. We show that: (i) basal area (BA: sum of the cross-sectional areas of all trees in a plot) increased significantly over time (by 0.10 +/- 0.04 m(2) ha(-1) yr(-1), mean +/- 95% CI); as did both (ii) stand-level BA growth rates (sum of the increments of BA of surviving trees and BA of new trees that recruited into a plot); and (iii) stand-level BA mortality rates (sum of the cross-sectional areas of all trees that died in a plot). Similar patterns were observed on a per-stem basis: (i) stem density (number of stems per hectare; 1 hectare is 10(4) m(2)) increased significantly over time (0.94 +/- 0.63 stems ha(-1) yr(-1)); as did both (ii) stem recruitment rates; and (iii) stem mortality rates. In relative terms, the pools of BA and stem density increased by 0.38 +/- 0.15% and 0.18 +/- 0.12% yr(-1), respectively. The fluxes into and out of these pools-stand-level BA growth, stand-level BA mortality, stem recruitment and stem mortality rates-increased, in relative terms, by an order of magnitude more. The gain terms (BA growth, stem recruitment) consistently exceeded the loss terms (BA loss, stem mortality) throughout the period, suggesting that whatever process is driving these changes was already acting before the plot network was established. Large long-term increases in stand-level BA growth and simultaneous increases in stand BA and stem density imply a continent-wide increase in resource availability which is increasing net primary productivity and altering forest dynamics. Continent-wide changes in incoming solar radiation, and increases in atmospheric concentrations of CO2 and air temperatures may have increased resource supply over recent decades, thus causing accelerated growth and increased dynamism across the world's largest tract of tropical forest

    Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research

    Get PDF
    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human–wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology

    Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia

    Get PDF
    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, underconstruction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments

    Palm fruit colours are linked with the broad-scale distribution and diversification of primate colour vision systems

    Get PDF
    A long-standing hypothesis in ecology and evolution is that trichromatic colour vision (the ability to distinguish red from green) in frugivorous primates has evolved as an adaptation to detect conspicuous (reddish) fruits. This could provide a competitive advantage over dichromatic frugivores which cannot distinguish reddish colours from a background of green foliage. Using an unprecedented global data set, we test this hypothesis by combining colour vision, distribution and phylogenetic data for >400 primate species with fruit colour data for >1700 palm species, i.e. keystone fruit resources for tropical frugivores. Structural equation models reveal that species richness of trichromatic primates increases with the proportion of palm species that have conspicuous fruits, especially in subtropical African forests. In contrast, species richness of trichromats in Asia and the Americas is not positively associated with conspicuous palm fruit colours. Macroevolutionary analyses further indicate rapid and synchronous radiations of trichromats and conspicuous palms on the African mainland starting 10 million years ago. These results suggest that the distribution and diversification of African trichromatic primates is strongly linked to the relative availability of conspicuous (vs. cryptic) palm fruits, and that interactions between primates and palms are impacted by the co- evolutionary dynamics of primate colour vision systems and palm fruit colours

    Long‐term trends in fruit production in a tropical forest at Ngogo, Kibale National Park, Uganda

    Full text link
    Fruit production in tropical forests varies considerably in space and time, with important implications for frugivorous consumers. Characterizing temporal variation in forest productivity is thus critical for understanding adaptations of tropical forest frugivores, yet long‐term phenology data from the tropics, in particular from African forests, are still scarce. Similarly, as the abiotic factors driving phenology in the tropics are predicted to change with a warming climate, studies documenting the relationship between climatic variables and fruit production are increasingly important. Here, we present data from 19 years of monitoring the phenology of 20 tree species at Ngogo in Kibale National Park, Uganda. Our aims were to characterize short‐ and long‐term trends in productivity and to understand the abiotic factors driving temporal variability in fruit production. Short‐term (month‐to‐month) variability in fruiting was relatively low at Ngogo, and overall fruit production increased significantly through the first half of the study. Among the abiotic variables, we expected to influence phenology patterns (including rainfall, solar irradiance, and average temperature), only average temperature was a significant predictor of monthly fruit production. We discuss these findings as they relate to the resource base of the frugivorous vertebrate community inhabiting Ngogo.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155479/1/btp12764.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155479/2/btp12764_am.pd

    Pattern and process in Amazon tree turnover, 1976-2001

    Get PDF
    Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests

    Few figs for frugivores: Riparian fig trees in Zimbabwe may not be a dry season keystone resource

    Get PDF
    Most plants flower and fruit at times of year when probabilities of pollination and seedling establishment are high. Fig trees (Ficus spp.) are often considered as keystone resources for vertebrate frugivores, in part because of year‐round fig production. This unusual fruiting phenology results in the maintenance of fig wasp populations, but in seasonal environments this means fruiting occurs during periods when the chances of seedling establishment are low. Under these circumstances, selection is expected to favour any individuals that reduce or eliminate fruiting at these times. Here, we describe a large‐scale survey of the extent of dry season fruiting by three riparian Ficus species in Gonarezhou National Park, Zimbabwe. Few trees of two monoecious species, F. sycomorus and F. abutilifolia, had figs, and most crops of F. sycomorus were far smaller than the trees were capable of producing. Large stands of the dioecious F. capreifolia were present, but fig densities were low and no mature female (seed containing) figs were recorded. Even though fig trees may have been the only species bearing fruit, the consequences of the low investment in reproduction by the three Ficus species were clear—there were too few figs for a landscape‐scale keystone role

    Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement

    Get PDF
    Accurate, up-to-date maps of and georeferenced data about human population distribution are essential for meeting the United Nations Sustainable Development Goals progress measures, for supporting real-time crisis mapping and response efforts, and for performing many demographic and economic analyses. In December 2014, Esri published the initial version of the World Population Estimate (WPE) image service to ArcGIS Online. The service represents a dasymetric footprint of human settlement at 250-meter resolution. It is global and contains an estimate of the 2013 population for each populated cell. In 2016 Esri published an additional image service representing the earth’s population in 2015 at 162-meter resolution. Esri’s WPE is produced by combining classified land cover data indicating predominantly built-up or agricultural locations with Landsat8 Panchromatic imagery, road intersections, and known populated places. The model detects where settlement is likely to exist beyond the areas classified as predominantly built up. The result is a global dasymetric raster surface of the footprint of settlement with a score of the likelihood of human settlement for each cell of the footprint. Population data are apportioned to this settlement likelihood surface by overlaying population counts in polygons representing census enumeration units or political units representing population surveys. This paper presents the method developed at Esri for producing the estimate of settlement likelihood
    corecore