2,677 research outputs found

    Craniopharyngioma

    Get PDF
    Craniopharyngiomas are rare malformational tumours of low histological malignancy arising along the craniopharyngeal duct. The two histological subtypes, adamantinomatous craniopharyngioma (ACP) and papillary craniopharyngioma (PCP), differ in genesis and age distribution. ACPs are diagnosed with a bimodal peak of incidence (5-15 years and 45-60 years), whereas PCPs are restricted to adults mainly in the fifth and sixth decades of life. ACPs are driven by somatic mutations in CTNNB1 (encoding β-catenin) that affect β-catenin stability and are predominantly cystic in appearance. PCPs frequently harbour somatic BRAFV600E mutations and are typically solid tumours. Clinical manifestations due to increased intracranial pressure, visual impairment and endocrine deficiencies should prompt imaging investigations, preferentially MRI. Treatment comprises neurosurgery and radiotherapy; intracystic chemotherapy is used in monocystic ACP. Although long-term survival is high, quality of life and neuropsychological function are frequently impaired due to the close anatomical proximity to the optic chiasm, hypothalamus and pituitary gland. Indeed, hypothalamic involvement and treatment-related hypothalamic lesions frequently result in hypothalamic obesity, physical fatigue and psychosocial deficits. Given the rarity of these tumours, efforts to optimize infrastructure and international collaboration should be research priorities

    Fracture toughness characterization through notched small punch test specimens

    Get PDF
    In this work a novel methodology for fracture toughness characterization by means of the small punch test (SPT) is presented. Notched specimens are employed and fracture resistance is assessed through a critical value of the notch mouth displacement . Finite element simulations and interrupted experiments are used to track the evolution of as a function of the punch displacement. The onset of crack propagation is identified by means of a ductile damage model and the outcome is compared to the crack tip opening displacement estimated from conventional tests at crack initiation. The proposed numerical–experimental scheme is examined with two different grades of CrMoV steel and the differences in material toughness captured. Limitations and uncertainties arising from the different damage phenomena observed in the lowest toughness material examined are thoroughly discussed

    Acquired immunologic tolerance: with particular reference to transplantation

    Get PDF
    The first unequivocally successful bone marrow cell transplantation in humans was recorded in 1968 by the University of Minnesota team of Robert A. Good (Gatti et al. Lancet 2: 1366–1369, 1968). This achievement was a direct extension of mouse models of acquired immunologic tolerance that were established 15 years earlier. In contrast, organ (i.e. kidney) transplantation was accomplished precociously in humans (in 1959) before demonstrating its feasibility in any experimental model and in the absence of a defensible immunologic rationale. Due to the striking differences between the outcomes with the two kinds of procedure, the mechanisms of organ engraftment were long thought to differ from the leukocyte chimerism-associated ones of bone marrow transplantation. This and other concepts of alloengraftment and acquired tolerance have changed over time. Current concepts and their clinical implications can be understood and discussed best from the perspective provided by the life and times of Bob Good

    Incidence, risk factors and causes of death in an HIV care programme with a large proportion of injecting drug users.

    Get PDF
    Objectives  To identify factors influencing mortality in an HIV programme providing care to large numbers of injecting drug users (IDUs) and patients co-infected with hepatitis C (HCV). Methods  A longitudinal analysis of monitoring data from HIV-infected adults who started antiretroviral therapy (ART) between 2003 and 2009 was performed. Mortality and programme attrition rates within 2 years of ART initiation were estimated. Associations with individual-level factors were assessed with multivariable Cox and piece-wise Cox regression. Results  A total of 1671 person-years of follow-up from 1014 individuals was analysed. Thirty-four percent of patients were women and 33% were current or ex-IDUs. 36.2% of patients (90.8% of IDUs) were co-infected with HCV. Two-year all-cause mortality rate was 5.4 per 100 person-years (95% CI, 4.4-6.7). Most HIV-related deaths occurred within 6 months of ART start (36, 67.9%), but only 5 (25.0%) non-HIV-related deaths were recorded during this period. Mortality was higher in older patients (HR = 2.50; 95% CI, 1.42-4.40 for ≥40 compared to 15-29 years), and in those with initial BMI < 18.5 kg/m(2) (HR = 3.38; 95% CI, 1.82-5.32), poor adherence to treatment (HR = 5.13; 95% CI, 2.47-10.65 during the second year of therapy), or low initial CD4 cell count (HR = 4.55; 95% CI, 1.54-13.41 for <100 compared to ≥100 cells/μl). Risk of death was not associated with IDU status (P = 0.38). Conclusion  Increased mortality was associated with late presentation of patients. In this programme, death rates were similar regardless of injection drug exposure, supporting the notion that satisfactory treatment outcomes can be achieved when comprehensive care is provided to these patients

    History of clinical transplantation

    Get PDF
    The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts

    Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids

    Get PDF
    Chromosome pairing in the meiotic metaphase I of wheatrye hybrids has been characterized by sequential genomic and fluorescent in situ hybridization allowing not only the discrimination of wheat and rye chromosomes, but also the identification of the individual wheat and rye chromosome arms involved in the chromosome associations. The majority of associations (93.8%) were observed between the wheat chromosomes. The largest number of wheat-wheat chromosome associations (53%) was detected between the A and D genomes, while the frequency of B-D and A-B associations was significantly lower (32 and 8%, respectively). Among the A-D chromosome associations, pairing between the 3AL and 3DL arms was observed with the highest frequency, while the most frequent of all the chromosome associations (0.113/ cell) was found to be the 3DS-3BS. Differences in the pairing frequency of the individual chromosome arms of wheat-rye hybrids have been discussed in relation to the homoeologous relationships between the constituent genomes of hexaploid wheat

    Tracing Water Sources of Terrestrial Animal Populations with Stable Isotopes: Laboratory Tests with Crickets and Spiders

    Get PDF
    Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the “water web”). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change

    The microRNA-29 family in cartilage homeostasis and osteoarthritis

    Get PDF
    MicroRNAs have been shown to function in cartilage development and homeostasis, as well as in progression of osteoarthritis. The objective of the current study was to identify microRNAs involved in the onset or early progression of osteoarthritis and characterise their function in chondrocytes. MicroRNA expression in mouse knee joints post-DMM surgery was measured over 7 days. Expression of miR-29b-3p was increased at day 1 and regulated in the opposite direction to its potential targets. In a mouse model of cartilage injury and in end-stage human OA cartilage, the miR-29 family were also regulated. SOX9 repressed expression of miR-29a-3p and miR-29b-3p via the 29a/b1 promoter. TGFβ1 decreased expression of miR-29a, b and c (3p) in primary chondrocytes, whilst IL-1β increased (but LPS decreased) their expression. The miR-29 family negatively regulated Smad, NFκB and canonical WNT signalling pathways. Expression profiles revealed regulation of new WNT-related genes. Amongst these, FZD3, FZD5, DVL3, FRAT2, CK2A2 were validated as direct targets of the miR-29 family. These data identify the miR-29 family as microRNAs acting across development and progression of OA. They are regulated by factors which are important in OA and impact on relevant signalling pathways

    Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours

    Get PDF
    Although compulsive sexual behaviour (CSB) has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions

    Genomic Arrangement of Regulons in Bacterial Genomes

    Get PDF
    Regulons, as groups of transcriptionally co-regulated operons, are the basic units of cellular response systems in bacterial cells. While the concept has been long and widely used in bacterial studies since it was first proposed in 1964, very little is known about how its component operons are arranged in a bacterial genome. We present a computational study to elucidate of the organizational principles of regulons in a bacterial genome, based on the experimentally validated regulons of E. coli and B. subtilis. Our results indicate that (1) genomic locations of transcriptional factors (TFs) are under stronger evolutionary constraints than those of the operons they regulate so changing a TF's genomic location will have larger impact to the bacterium than changing the genomic position of any of its target operons; (2) operons of regulons are generally not uniformly distributed in the genome but tend to form a few closely located clusters, which generally consist of genes working in the same metabolic pathways; and (3) the global arrangement of the component operons of all the regulons in a genome tends to minimize a simple scoring function, indicating that the global arrangement of regulons follows simple organizational principles
    corecore