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Abstract The first unequivocally successful bone marrow cell transplantation in humans 
was recorded in 1968 by the University of Minnesota team of Robert A. Good (Gatti et al. 
Lancet 2: 1366-1369, 1968). This achievement was a direct extension of mouse models of 
acquired immunologic tolerance that were established 15 years earlier. In contrast, organ (Le. 
kidney) transplantation was accomplished precociously in humans (in 1959) before dem­
onstrating its feasibility in any experimental model and in the absence of a defensible 
immunologic rationale. Due to the striking differences between the outcomes with the two 
kinds of procedure, the mechanisms of organ engraftment were long thought to differ from the 
leukocyte chimerism-associated ones of bone marrow transplantation. This and other con­
cepts of alloengraftment and acquired tolerance have changed over time. Current concepts 
and their clinical implications can be understood and discussed best from the perspective 
provided by the life and times of Bob Good. 

Keywords Tolerance· Alloengraftment . Organ transplantation . Bone marrow 
transplantation . Clonal exhaustion-deletion . Immune ignorance . Immunosuppression . 
Chimerism . Microchimerism 

Introduction 

How do we remember the man to whom we pay homage this week? My assessment more 
than 10 years ago was as follows: "Bob Good, more than any other individual, is 
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acknowledged to be the Father of Clinical Immunology. The pattern of essentially all of his 
achievements explains why. He invariably started by seeing disease in its human victims. 
Haunted by the appalling sight, he sought to understand the true biologic meaning of these 
disorders. Frequently, he started with a clean slate in that the diseases were 'mystery 
afflictions' of unknown cause. Finally, he evolved cures or palliation, not once, but many 
times. Other great men have done one or two such things, but rarely, if ever, on such a 
grand scale ". 

After describing Good's accomplishments, this letter of nomination for an important 
honor concluded: "It may be that the very diversity of Dr. Good's contributions 
diminished recognition of their individual importance. That is like saying it is easier to 
watch the stars than to gaze at the sun. Others understood the galaxies, but Good 
understood the universe. What he did for 50 years was to freely distribute intellectual 
gems, with no thought of credit or return. While being one of the most cited scientists in 
the world, he radiated nobility and humanity". 

What better reasons could there be to have a Robert A. Good Immunology Society? 
Most, if not all, of its founding members were under Bob Good's sphere of influence at 
sometime in their professional lives. They, and members elected from succeeding 
generations, will make certain that he lives on. 

Proposed axiom: organ engraftment is a form of tolerance 

Acquired immunologic tolerance was one of Bob Good's most enduring preoccupations. It 
also has been the "holy grail" dreamed of by organ transplant surgeons ever since the 
classical experiments of Billingham, Brent, and Medawar [1, 2] and Main and Prehn [3] 
showed that tolerance to allografts was strongly associated with donor leukocyte chime­
rism. Here, I will defend the concept that the successful engraftment of an organ means that 
the recipient has developed some degree of leukocyte chimerism-dependent donor-specific 
tolerance, and that the completeness of this tolerance can be inferred from the amount of 
immunosuppression necessary to maintain stable function and structure of the graft. 

The bellwether kidney transplant cases in Denver 

The evidence for this axiom has historical roots that can be traced back more than 40 years 
to two observations summarized in the title of a 1963 report from the University of 
Colorado [4]. The first finding was that kidney allograft rejection was highly reversible, 
rather than being inexorable as had been previously assumed. The second observation was 
that the reversal of rejection frequently was succeeded by what was construed to be 
variable acquired tolerance. The patients described in this report had been treated with 
azathioprine (ImuranR) for one to 4 weeks before as well as after transplantation of kidney 
allografts from familial donors (not identical twins) (Fig. lA). The rejections that occurred 
in almost all recipients were diagnosed by increases in serum creatinine, following good 
early post-transplant function. About 15% of the grafts were promptly lost to acute 
rejection despite the addition of steroids. But in the other cases, the rejections were 
reversed with large doses of prednisone (Fig. lA). The ability after successful treatment of 
a rejection to wean immunosuppression to very low levels in many recipients (Fig. lA) was 
interpreted as evidence of donor-specific tolerance. Although controversial, the descriptive 
use of the word "tolerance" proved to be appropriate. Nine (19%) ofthe 46 familial donor 
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Fig. 1 An historical shift in policy of immunosuppression for organ transplant recipients. (A) During 1962-
1964: azathioprine monotherapy was given before and after kidney transplantation at the University of 
Colorado, adding prednisone postoperatively only to control and reverse breakthrough rejections. Surrogate 
immune monitoring was done with serum creatinine tests. (B) Mid 1 964-onward: In most centers, 
pretreatment was omitted and heavy prophylactic therapy with prednisone (plus additional drugs as these 
became available) was started at the time of transplantation. More than a third of a century later, it was 
recognized that these management changes essentially eliminated the possibility of achieving drug-free 
tolerance. Tx = organ transplantation 

allografts transplanted during 1962-63 at the Denver center functioned for the next 4 
decades, each depicted in Fig. 2 as a horizontal bar [5]. In seven of the nine recipients, all 
immunosuppression eventually was stopped without rejection for periods ranging from 7 to 
more than 40 years (Fig. 2). The eight patients who are still alive after 42-44 years bear the 
longest continually functioning organ allografts in the world [5]. Inexplicably, no 
comparable cohort of drug-free kidney recipients was produced again, anywhere in the 
world, in the next 4 decades . 
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Fig. 2 Drug-free tolerance in long-surviving kidney allograft recipients of 1962-1963 whose immuno­
suppression was administered as shown in Fig. lAo Light portions of transverse bars: off immunosup­
pression. By permission of Starzl et al [5] 
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Hepatic "tolerogenicity" 

However, drug-free human recipients of cadaveric liver grafts continued to be observed, 
some of whom have been off all immunosuppression for more than 30 years [5, 6]. 
Importantly, such liver recipients were produced only in three historical periods during 
which light immunosuppression was used [7]. More recently, a drug-free state has been 
frequently reached after parent to offspring live donor liver transplantation under minimal 
immunosuppression in Kyoto, Japan [81. 

The higher frequency of drug-freedom in human liver compared to other kinds of 
organ recipients was not surprising. In canine experiments performed in the early 1960's 
with unrelated outbred donors and recipients, long or lifetime liver engraftment was 
observed much more frequently than kidney engraftment when post-transplant azathio­
prine therapy was limited to 120 days [9]. Prolonged "acceptance" of liver grafts 
subsequently was reported after only one or 2 peri operative doses of antilymphocyte 
globulin (ALG) [7, 1OJ. 

Moreover, lifetime survival after liver replacement was demonstrated in the mid-1960's 
without any treatment at all in about 20% of experiments with outbred unrelated pigs 
carried out in France [11], England [12-14], and the United States [15]. Such spontaneous 
tolerance later was demonstrated in all liver transplant experiments done with selected 
strain combinations of inbred rats [16 J and mice [17]. Importantly, heart and kidney 
allografts also can self-induce spontaneous engraftment, although in much fewer rodent 
strain combinations [17, 18]. 

The contrasting roles of immunosuppression for organ and bone marrow 
transplantation 

Since the foregoing clinical and experimental examples of ultimately drug-free, or entirely 
spontaneous, engraftment were exceptions to the usual rule of rejection, they had 
essentially no influence on the remarkable progress in human organ transplantation that 
took place worldwide after 1964. Instead, this progress was almost entirely dependent on 
the development of more potent immunosuppressive drugs. Both the old and new drugs 
were applied in remarkably divergent ways for organ and bone marrow cell transplantation. 

Organ transplantation 

Kidney transplantation already was a well established clinical service, and the first 
successful human liver [19] and heart transplantatons [20] had been accomplished by the 
time of the first unequivocally successful clinical bone marrow cell engraftment by Gatti 
et al. [21]. Progress with kidney transplantation had been slow at first. Between January, 
1959, and the spring of 1963, there were only seven examples in the world of 2: 1 year 
survival of kidney allografts (summarized in Ref. 22) (Table 1) [23-26]. Patients 1 and 7 
were treated in Boston. Recipients 2-6 were in 2 competing Paris centers (Table 1). Since 
these were rare exceptions to the usual outcome of patient death, renal transplantation 
reached a temporary impasse until the I-year milestone was reached by most live donor 
kidney allograft recipients treated in Denver during 1962-63 with azathioprine and 
prednisone [4, 27]. Dozens of new renal centers opened during 1963-64 in the United 
States and Europe, all using the double drug combination. 
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Table 1 Kidney transplantation with 2'12 months survival as of April 1963 

Case City [Ref] Date Donor Survival (months)a 

1. Boston [23] 1-24-59 Frat twin >50 

2. Paris [24] 6-29-59 Frat twin >45 

3. Paris [25] 6-22-60 Unrelatedb 18 (died) 

4. Paris [24] 12-19-60 Motherb 12 (died) 

5. Paris [25] 3-12-61 Unrelatedb 18 (died) 

6. Paris [24] 2-12-62 Cousinb >13 

7. Boston [26] 4-5-62 Unrelated > 12 (failing) 

All patients received cytoablation with total body irradiation except number 7 who was given azathioprine 

a The kidneys in patients I, 2, and 6 functioned for 20.5,25, and 15 years, respectively. Patient 7 rejected 
his graft after 17 months and died after return to dialysis 

b Adjunct steroid therapy 

Boston: J.E. Murray (cases 1 and 7) 

Paris: J. Hamburger (cases 2, 4 and 6), R. Kuss (cases 3 and 5) 

Beginning in 1964, however, changes were made in the way the two drugs were used. 
First, large doses of prednisone were added to azathioprine in most centers from the time of 
transplantation (Fig. 1B). The shift to heavy prophylactic treatment was caused by the 15% 
rate of kidney losses to non-reversible rejection when steroids were added only as needed. 
In a second modification, the prolonged pretreatment with azathioprine was omitted or 
deemphasized, in part because there was no time for this in cadaveric organ recipients 
(Fig. 1B). 

When ALG [10, 281, cyclosporine [29, 30], and tacrolimus [31, 32] were added to the 
therapeutic armamentarium, they were introduced clinically by reverting back to the 
strategy depicted in Fig. I A. Cyclosporine and tacrolimus were begun as monotherapy, 
adding steroids only to treat breakthrough rejections [30-33]. When anti-human ALG was 
first used in 1966, it was administered in a short perioperative course that included 
pretreatment, or was given postoperatively as a substitute for prednisone to treat ste­
roid-resistant rejection [10, 28] The use of all these drugs promptly drifted to heavy 
prophylactic immunosuppression in the same way as had occurred with the original 
combination of azathioprine and prednisone, and for the same reason: i.e. not all rejections 
that developed under baseline post-transplant monotherapy could be reversed and con­
trolled. By the 1990's, a bewildering array of stacked drugs, begun at the time of trans­
plantation, was in use worldwide (Fig. 1B), with the stipulated objective of reducing the 
incidence of acute rejection to zero. 

The preemptive use of multiple drug immunosuppression was spectacularly 
successful insofar as acute rejection became almost a non-problem. Better short and 
medium term patient and graft survival was accomplished with all transplanted organs, 
epitomized by stepwise improvements in our own liver transplantation experience [34]. 
There was, however, a dark side. Chronic rejection and the devastating morbidity and 
mortality of long-term immunosuppression had now become unresolvable problems. 
Moreover, the drug-free tolerance that had not been rare in the earliest organ recipients 
(and just after the clinical introduction of ALG, cyclosporine, and tacrolimus) was 
almost never seen again. 
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Thus, 4 eras of transplantation were delineated by the introduction of a drug: 
azathioprine (1962), ALG (1966), cyclosporine (1979), and tacrolimus (1989). In each era, 
the new drug was soon incorporated into increasingly complex multiple drug regimens. 
Inexplicably, the best long-term results were obtained at the beginning, when the new 
baseline drug was started alone as in Fig. 1. 

Bone marrow cell transplantation 

In contrast to the lifetime commitment to daily immunosuppression for organ recipients, 
the stipulated goal after human bone marrow cell transplantation always has been drug­
free tolerance. Other differences between the two kinds of transplantation were equally 
striking. The best known features of bone marrow (or other hematolymphopoietic) cell 
transplantation were a high risk of GVHD, and dependence for a good outcome on 
HLA matching [21, 35-39]. These and other characteristics of bone marrow trans­
plantation did not remotely resemble those of organ transplantation: e.g. organ trans­
plantation was almost free of GVHD risk and was routinely feasible without HLA 
matching (Table 2). 

Potential mechanisms of organ engraftment 

Almost from the beginning, the differences between organ and bone marrow trans­
plantation prompted two questions. First, why had organ transplantation been feasible at 
all, seemingly in violation of all immunologic rules? Second, what was the relation (if 
any) of organ engraftment to tolerance? These eventually became 2 of biology's most 
enduring mysteries. The root cause of the intellectual cul-de-sac was disconnection of 
organ transplantation from the scientific base of donor leukocyte chimerism shared by 
the mouse tolerance models [1-3] and their clinical analogue of bone marrow trans­
plantation [21, 35-39]. Since successful organ transplantation had been accomplished in 
the presumed absence of donor leukocyte chimerism, organ engraftment ostensibly 
required explanation by separate and distinct mechanisms. What were these mecha­
nisms? 

Table 2 Historical view of differences between clinical organ transplantation and bone marrow 
transplantation 

Feature Organ transplantation Bone marrow transplantation 

Host cytoablation No Yes' 

HLA matching Not essential Critical 

Principal complication Rejection Graft-versus-host disease (GYHD) 

Immunosuppression-free Rare Common 

Term for engraftment Acceptance Tolerance 

Leukocyte chimerism NOb Yes 

a It was not fully recognized until the 1990's that this therapeutic stcp accounts for all of the other 
differences (see text) 

b The discovery in 1992 of rnicrochimerism in organ recipients meant that this notation should be "yes" 
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Immune ignorance 

One of the scientists who tackled the question was the young surgeon, Clyde Barker at the 
University of Pennsylvania, who joined forces in 1967 with Rupert Billingham. In 1968, 
Barker and Billingham reported that skin grafts were not rejected when the grafts were 
placed on an island of recipient skin that had been detached from lymphatic drainage but 
was nourished by a vascular pedicle (Fig. 3) [40]. The simple experiment exposed at least 
one way in which an allograft may escape rejection: i.e. failure of the immune system to 
recognize the presence of antigen that fails to reach host lymphoid organs (immune 
ignorance). 

The concept that immune activation cannot occur unless antigen reaches lymphoid 
organs is a crucial element of the hypothesis that clonal exhaustion-deletion is the seminal 
mechanism of acquired tolerance (next section). However, more than a quarter century 
passed before the conclusions about immune ignorance by Barker and Billingham were 
formally validated. The reason was the difficultly of preventing mobile alloantigen (i.e. 
leukocytes) from reaching host lymphoid organs in a clinically relevant transplant model. 
The definitive experiments were done at Yale University by Lakkis [41] in mutant aly-aly 
mice that possess fully competent cytotoxic T lymphocytes (CTL), but no secondary 
lymphoid organs except the spleen [42]. Although these animals are immunodeficient, they 
can reject heart allografts. But after the spleen is removed, heart transplants are not rejected 
because their presence is no longer detected in the absence of all organized host lymphoid 
collections [41]. 

Fig. 3 Failure of the immune system to recognize and reject skin allografts whose mobile antigen 
(i.e. passenger leukocytes) is prevented from reaching host lymphoid organs. By pennission of Barker and 
Billingham [40] 



Immunol Res (2007) 38:6-41 13 

Clonal exhaustion-deletion 

In 1969, we postulated that the seminal mechanism of successful transplantation of the liver 
or any other organ was clonal exhaustion-deletion. We also proposed that prolonged allo­
engraftment, with or without the need for immunosuppression, was a form of variable 
tolerance (Fig. 4) [43,44]. Although the overall hypothesis was correct, there were too many 
missing links at the time for it to be credible. First, elucidation of the mechanisms of antigen 
recognition by Zinkemagel and Doherty lay 5 years ahead [45, 46J. Moreover, the transport of 
donor antigen to host lymphoid organs was ascribed to macrophages (Fig. 4) rather than to the 
dendritic cells described by Steinman and Cohn [47]. Finally, clonal exhaustion-deletion, like 
immune ignorance, was only a theory. And like immune ignorance, it vanished from the 
literature until its existence and importance were formally proved in the early 1990s [48,49]. 

Abandonment of immune ignorance and clonal exhaustion-deletion left a vacuum that 
was promptly filled with numerous altemative engraftment mechanisms (See later in 
Table 3). 

The relation of leukocyte migration to alloengraftment and tolerance 

Misinterpreted early clues 

Discussions of organ engraftment mechanisms in the 1960's took place in a restrictive 
anatomic context. The parenchymal cells, vascu I ar components, and passenger leukocytes of 
an organ were all viewed as stationary targets of the host immune response. With this 
assumption, a crucial observation in the Colorado kidney transplant experience of 1962-1963 
could not be correctly interpreted. In essence, positive tuberculin and other skin tests of 
delayed hypersensitivity in the kidney donors were found to have been transferred to 
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"Fig. 4 This illustration and caption (in quotes) were published in 1969 to explain organ engraftment. 
"Hypothetical mechanisms by which non-specific immunosuppression may lead to selective abrogation of 
the host immune response. Special susceptibility to these agents of a fraction of the lymphoid population 
could lead to exhaustion of a clonc and, hence, tolerance. Since maintenance of such cell lines [clones] even 
in adult life is apparently thymic dependent in experimental animals, thymectomy would be expected to aid 
the process; this appears to be true in rodents, but such an effect of thymus removal has not been detected in 
dogs or humans". The concept proposed in 1969 was for the most part correct, but was not considered 
credible because of lack of scientific support. By permission of Starzl [44] 
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previously negative recipients [50,51] (Fig. 5). Although this prima facie evidence of adoptive 
transfer indicated that donor immune cells had survived, it was thought that the donor leuko­
cytes were still in the graft. Therefore, the findings were ascribed to a hypothetical humoral 
substance ("transfer factor") rather than to donor cells that had migrated into the recipient. 

Further clues about leukocyte migration surfaced in 1969 when karyotyping studies were 
done in human female recipients of livers that had been obtained from male donors. After 
100 days, the hepatocytes, duct cells, and vascular endothelium of the hepatic grafts retained 
their donor (male) sex whereas most of the bone marrow-derived passenger leukocytes of the 
Ii ver were replaced with female (recipient) cells [53]. Although this was an important 
observation, the resulting composite cellular structure of the graft (part donor, part recipient) 
was considered to be a unique feature of liver transplantation until it was demonstrated in the 
early J 990s that all other established organ allografts underwent the same transformation [52, 
54, 55). In the meanwhile (between 1982 and 1992), it had been demonstrated that large 
numbers of graft passenger leukocytes migrated into the recipient [56-60]. Even then, 
however, it was generally assumed that the donor cells missing from the graft had undergone 
immune destruction with selective sparing of the specialized parenchymal cells. 

An epiphany 

A pivotal step toward connecting the dots was taken in 1992 when multilineage donor 
leukocyte microchimerism was demonstrated in 30 of 30 liver, kidney, and other kinds of 
human organ recipients whose grafts had been functioning for up to 3 decades. The study 
was an extremely simple one. Using sensitive immunocytochemical and molecular 
methods, sparse numbers of the donor leukocytes were found in the blood or one or more 
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Fig. 5 Prolonged transfer from donors to recipients of positive tuberculin, coccidioidin, or other delayed 
sensitivity skin tests in ) 962-63 cases of kidney transplantation at the University of Colorado. Although 
inexplicable at the time , these observations of adoptive transfer were consistent with donor leukocyte 
migration and relocation in the recipient. By pennission of Stan) et al. [52] 
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of the tissue samples taken from multiple recipient sites (skin, lymph nodes, bone marrow, 
hean, bowel) [52, 61-64]. Biopsies of the grafts also were examined. The findings 
mandated a change in the perceived landscape of transplantation immunology. 

The paradigm shift 

An engrafted organ previously had been viewed as an island in a hostile sea in which the 
leukocytes were solely those of the recipient (Fig. 6, Panel A). The revised view depicting 
microchimerism in various non-lymphoid and lymphoid recipient sites is shown in Panel 
C. In the reverse image of bone marrow transplantation, the ideal result had been con­
sidered to be complete replacement of all hematolymphopoietic cells (Panel B). However, 
in 1991, Przepiorka and Thomas in Seattle had detected a trace population of recipient 
leukocytes in essentially all such "perfect" bone marrow recipients (Panel D) [65]. Now, 
it was evident that organ engraftment (Panel C) and bone marrow cell engraftment (Panel 
D) differed fundamentally only in the proportions of donor and recipient cells (66) . 

The double immune response 

In both kinds of transplant recipient, the surviving cells of the minority populations obviously 
were progeny of precursor or pluripotent stem cells that had survived a double immune 
reaction years or decades earlier, during the first few days after transplantation. We deduced 
that alloengraftment occurred when" ... responses of co-existing donor and recipient cells. 
each to the other, resulted in reciprocal clonal exhaustion, followed by peripheral clonal 
deletion " (61) (Fig. 7). Exhaustion-deletion of the host versus graft response during the first 
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Fig. 6 Basis of a paradigm shift (see text). (A. B) HislOrical perception of organ and bone marrow cell 
recipients. (C, D) revised view of transplantation recipients 
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Fig.7 Contemporaneous irrunune responses following allotransplantation: host versus graft (HYG. upright 
curves) and graft versus host (GYH. invened curves). In contrast to the usua lly dominant HYG reaction of 
organ transplantation shown here. the GYH reaction usually is dominant after bone marrow cell 
transplantation to the irradiated or otherwise immune-compromised recipient . Therapeutic failure with either 
type of transplantation implies the inability of immunosuppression to control one. the other. or both of the 
responses . By permission of Starzl and Zinkemagel [67) 

few post-transplant days or weeks of maximum migration of the organ's passenger leukocytes 
explained both the reversal of rejection, and the development of variable tolerance that had 
been first observed in kidney recipients 30 years earlier (Fig. I A). 

The host response (the upright curve in Fig. 7) was the dominant one in most cases of 
organ transplantation, but there also was a usually invisible graft versus host (GYH) 
reaction (the inverted curve). If the GYH response was not also e!illausted and deleted. it 
could be expressed as clinical GYHD. GYHD was unusual, and when it occurred. it usually 
was in recipients of a leukocyte-rich organ (a liver or intestine) [52]. 

Host irradiation or other methods of cytoablation!cytoreduction in bone marrow 
recipients [35,37-39]. or the preexistence of immune deficiency disease as in Bob Good's 
first cases [21], simply transferred immune dominance from the host to the graft. The high 
ri sk of GYHD. the prerequisite of HLA matching to avoid this complication, and all of the 
other major features that distinguished bone marrow from organ transplantation (Table 2) 
were readily explained. 

A unified view of tolerance models 

With this paradigm. organ engraftment in the spontaneous tolerance models of organ 
transplantation discussed earlier could be readily related to the freemartin cattle 
observations of natural tolerance by Owen [63], the mouse acquired tolerance models that 
began in 1953 with Billingham, Brent, and Medawar [I], and the parabiosis models of Bob 
Good [69] (Fig. 8). Experimental evidence supporting various elements of the new para­
digm was systematically compiled in Pittsburgh and elsewhere throughout the 1990s. using 
experimental rat and mouse models (summarized in refs. 6, 67, 70-72). 

The King-Pin leukocyte 

The reason why the leukocyte always seemed to be the indispensable tolerogenic cell was 
explicitly stated in the final sentence of our original 1992 Lancet article: " The key event 
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Fig. 8 The relation of organ engraftment to classical models of spontaneous donor leukocyte chimerism­
associated tolerance. By permisSion of Starz) et al [6] 

[in allograft acceptance] is cell migration and relocation"' (61). As already emphasized, 
antigen that does not reach host lymphoid organs is not recognized to be present (immune 
ignorance). The only mobile antigen in organs consists of passenger leukocytes . Migration 
of these passenger leukocytes to organized lymphoid collections presumably was a 
prerequisite for the seminal tolerance mechanism of clonal exhaustion-deletion. 

The stages of leukocyte migration 

By 1992, the kinetics of the migration had been delineated in mouse, rat and human studies. 
The cell movement occurred in two stages [55, 58, 60, 73-77]. In stage I, the donor 
leukocytes migrated selectively to host lymphoid destinations where immune activation 
occurs. The second stage began after 1-3 weeks when cells that had escaped initial immune 
destruction moved on to heterogenous sites that included skin and other non-lymphoid 
locations . This second phase, which could culminate in various levels of leukocyte chime­
rism , was essentially complete after 30-50 days [55, 73-77] . All of these migratory events 
were essentially the same as those of the infused leukocytes of bone marrow cell infusion [78] . 

The pace of the two stages was frozen in time: i.e. it remained constant throughout 
mammalian evolution without regard for species size, gestational duration, or interval 
between generations. As a consequence, one alloimmune response curve fit all extant 
species (Fig . 9, bottom). The first few weeks after organ allotransplantation corresponded 
with the maximal acute dissemination of the donor leukocytes to the host lymphoid organs, 
and coincided with the greatest risk from rejection . This period also provided the window 
of greatest opportunity for our postulated seminal mechanism of acquired allotolerance 
(i .e. clonal exhaustion-deletion). 

The migration of non-cytopathic pathogens 

What was not known in 1992 because their work was not published until the following 
year, was that Zinkemagel and his associates in Zurich had come to an explanation of 
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Fig. 9 The pace of development of a donor-specific response following organ transplantation in different 
extant species and the subsequent development of donor-specific non-reactivity. These events closely match 
the kinetics of donor leukocyte migration and relocation. Note that immunosuppression may not be required 
for liver engraftmenr in 3 of the 5 species shown (lightly shaded portion of transverse bars). 
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acquired IOlerance to pathogens that was essentially the same as that of our allotolerance 
paradigm. In the 1970's, Zinkemagel and Doherty showed that the MHC-restricted 
cytolytic T cell response induced by non-cytopathic microorganisms was the same as that 
induced by allografts. These studies were done in highly controlled experimental models of 
infection with the lymphocytic choriomeningitis virus (LCMV) and other intracellular 
parasites [45, 46]. Their subsequent investigations of tolerance were done with the same 
models and described in 4 landmark articles between 1993 and 1997 [79-82]. 

The kinetics of destructive immunity 

Figure IDA, C shows how the migration of non-cytopathic microorganisms determines the 
induction at host lymphoid organs of the T-cell response. The tropism of the specific 
pathogen then determines the targets of the response. For example, the principal spread of a 
hepatitis virus in a non-transplant patient is to the liver (Fig. lOA). With a cytomegalovirus 
(CMV) infection, the main infestation may be in the lung (Fig. 1 ~C). Importantly, the liver 
(panel A) and lung (panel C) in these separate and distinct infections are not where the 
antiviral response is induced . Instead, the response to both pathogens is induced at host 
lymphoid organs to which viral antigen is carried by a relatively small number of infected 
antigen presenting cells. The virus-specific T cells generated at host lymphoid organs then 
destroy infected host cells wherever these "non-self' cells are located. The main T celJ 
target is therefore the heavily infested liver (Fig. lOA) or lung (Fig. I DC). 

The principles are the same after organ transplantation, although the details are simpler 
(Fig. lOB). The allograft ' s "non-self" passenger leukocytes migrate preferentially to host 
lymphoid organs and induce donor-specific T cells that target passenger leukocytes that 
have left the graft as well as all cells of the outlying source organ. The resulting acute liver 
graft rejection is therefore analogous to a bout of acute hepatitis (compare panels A and B). 
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Fig. 10 How the spread and localization of amigen determines both the induction at host lymphoid organs 
of adaptive immunity , and then the target of this immunity. (A) hepatitis virus (8) migratory passenger 
leukocytes of a transplanted organ (here a liver) (e) cytomegalovirus (CMY) localized to the lung 

In the comparable CMV analogy, the immune response that eliminates a pulmonary 
infection (Fig. IOC) is fundamentally the same as rejection of a lung aJlograft (not shown). 

No matter what the infection, and no matter what kind of transplantation, the analogies 
between the destructive immunity against non-cytopathic microparasites and allografts 
were always identifiable. Moreover, it was this highly specific adaptive immune response 
against allografts, or against infectious agents, that was exhausted and deleted in both the 
transplant and infection hypotheses of tolerance. 

The spectrum of transplantation/infection analogies 

Recognizing that the Pittsburgh and Zurich investigations were on parallel pathways, a 
cross-over review was undertaken in 1997 and published in a December 1998 issue of the 
New England Journal of Medicine. The concept that had been independently developed in 
transplant and infection models was generalized in the following way: "The migration and 
localization of antigen govern the immunologic responsiveness or unresponsiveness 
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against infections, tumors, or self-and against xenografts or allografts" [67]. The out­
comes under all these circumstances were determined by the balance established between 
the amount of mobile antigen with access to host lymphoid organs and the number of 
antigen-specific cytolytic T-cells (CTL) induced at the lymphoid sites (Fig. 11) [67]. 

Non-response 

If a virus remains localized in non-lymphoid sites or spreads by extralymphatic routes 
(e.g. the human papilloma [wart] virus), no immune response is induced (immune 
ignorance, Fig. ItA). Transplant analogues in which immune ignorance is the dominant 
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Fig. 11 Analogies between infection by non-cytopathic microparasites and the scenarios of transplantation. 
The outcomes are governed by the migration and localization of the respective antigens (refer also to Fig. 
10). The analogies have been obscured by the presence of contemporaneous host-versus-graft (HVG) and 
graft-versus-host (GVH) responses after transplantation and the additional factor of therapeutic immuno­
suppression. (A) The presence of a pathogen that fails to reach organized host lymphoid tissue is not 
recognized (immune ignorance). Consequently, there is no immune response. The relation of immune 
ignorance to clonal exhaustion-deletion must be understood to comprehend alloengraftment (see text). (B) A 
highly infectious but asymptomatic and stable carrier state may be reached when a rampant non-cytopathic 
microorganism exhausts and deletes the antigen-specific immune response, (e.g. viral hepatitis). The 
transplant analogy is 'complete' repopulation of an immunodeficient or cytoablated bone marrow recipient 
without the penalty of GVHD. (C) Complete elimination of a non-cytopathic pathogen by an immune 
response that then subsides without memory. The transplant analogy is rejection of an organ's passenger 
leukocytes and the outlying source graft (refer to Fig. 10). (D) Instead of the outcome in Panel C, persistence 
of small numbers of microorganisms may maintain cellular plus antibody 'memory' (protective immunity). 
In the transplantation analogy, residual microchimerism may result in a "presensitized" state that renders a 
transplant candidate "crossmatch positive" with most donors [83, 84]. (E) Disease carrier states in which a 
balance is established that favors pathogen load over pathogen-specific T cells. The corresponding spectrum 
of transplantation analogues is delineated by simply substituting "donor leukocyte" for pathogen. For organ 
transplantation purposes, an umbrella of immunosuppression usually is needed to keep the various balances 
in stable equilibrium (see also Fig. 12). (F) Refractory infection syndromes in which neither adaptive 
immunity nor therapy with antimicrobial agents can achieve the kind of disease control shown in Panels C 
and D or the asymptomatic carrier state sometimes seen in Panels Band E. The treatment failure analogues 
of transplantation occur when the opposite objective (sustained dominance of the migratory alloantigen over 
an aggressive antidonor T cell response) is not achievable with immunosuppression or other means 
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component include the engraftment of bits of parathyroid or other endocrine tissues in 
privileged non-lymphoid sites [85] or encasement of these tissues in a rnillipore chamber 
that allows passage of nutrients and humoral molecules but not donor or host cells [86]. 
Pure or predominant immune ignorance has been an unattainable objective for purposes of 
whole organ or hematolymphopoietic cell transplantation. 

The "complete carrier" state 

If a rapidly expanding viral load cannot be controlled by the virus-specific T-cell response, 
the response may be exhausted and deleted with a resulting disease carrier state. The 
asymptomatic "complete carrier" is analogous to the idealized bone marrow recipient who 
has near total hematolymphopoietic chimerism (Fig. lIB) [67]. 

Disease control vis-a-vis transplant rejection 

In most infection experiments, sufficient numbers of virus-specific CTL are induced 
[79-82]. If this results in complete elimination of the virus (the fall to zero of the solid line 
in Fig. IIC, the response ceases without T-cell memory (the fall to zero of the dashed line). 
This was comparable to rejection of an organ allograft including total elimination of the 
graft's disseminated migratory cells. However, such complete sterilization of virus was 
almost never seen in the infection models. 

Instead, small amounts of live virus usually persist in non-lymphoid niches that are 
relatively inaccessible to host effector mechanisms. From these sites, residual virus may 
periodically migrate secondarily to host lymphoid organs and stimulate continued virus­
specific immunity (Fig. 110). The ongoing virus-specific protective immunity is analogous 
to the presensitization states that frequently are associated with residual microchimerism 
after a failed transplant procedure [83, 84]. Once microchimerism is established in an 
organ recipient, elimination of the donor leukocytes is extremely difficult [87]. 

Compromise outcomes 

Persistent mobile antigen was, in fact, a double-edged sword [67, 88]. In some infection 
models, very small quantities of virus migrating between non-lymphoid and lymphoid sites 
could maintain the exhaustion-deletion induced at the outset (Fig. lIE): i.e. a balance 
favoring viral antigen over anti-viral CTL. In Panel E, the lowest combination of solid and 
dashed lines also represents the analogous balance between mobile alloantigen and the 
CTL response reached in experimental models of organ-induced spontaneous tolerance. 
Here, the exhaustion-deletion achieved at the outset is sustained by microchimerism [67, 
881. Importantly, stable maintenance of any of the aJloantigen dominant balances shown in 
Panel E may require immunosuppression, even when the donor leukocytes are at the 
macrochimerism level. Panel F shows a spectrum of transplant treatment failures in which 
no amount of clinically acceptable immunosuppression is able to maintain the desirable 
eqUilibrium. 

Thus, tolerance, with or without an umbrella of immunosuppression, merely means that 
the mobile antigen outweighs the antigen-reactive T-cell response. Although the 
probability of tolerance increases with higher levels of chimerism, no arbitrary amount of 
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chimerism can be equated with tolerance. Thus, leukocyte chimerism is a necessary 
condition for, but is not synonymous with transplantation tolerance. In this view, all of the 
scenarios that develop after experimental or clinical transplantation are analogues of 
infection outcomes. Moreover, all examples of prolonged allograft survival, whether 
immunosuppression dependent or independent, are analogues of infectious disease carrier 
states [67, 88]. 

The microchimerism controversy 

Such analogies have generated controversy, primarily because many authorities have 
considered the microchimerism of organ-bearing recipients to be an epiphenomenon 
secondary to graft acceptance by T-regulatory or other alternative mechanisms (Table 3). 
This "cause or effect" question about the role of microchimerism was answered 
definitively in a report by Zinkernagel's team in the January 2006 issue of the Journal of 
Clinical Investigation entitled: Microchimerism Maintains Deletion of the Donor 
Cell-Specific CD8+ T Cell Repertoire [89J. Those experiments formally proved that 
leukocyte chimerism, even at a micro level, is essential for perpetuation of allotolerance, 
and by the seminal mechanism of clonal exhaustion-deletion. The study did not exclude an 
accessory role for the immunoregulatory mechanisms shown in Table 3. It did indicate, 
however, that the alternative mechanisms are not essential. 

Therapeutic implications for transplantation 

The simple concept that balances between mobile antigen and antigen-specific T -cells 
govern immunologic responsiveness and non-responsiveness has profound therapeutic 
implications (Fig. 12). Tilting the balance in favor of antigen by ratcheting down the 
cognate T-cell response with immunosuppression has been the principal means of perpe­
tuating organ alloengraftment. The price has been loss of immune surveillance against 
infections and malignant neoplasms [43, 90, 91], just as Bob Good had demonstrated 
earlier in patients with immune deficiency diseases. 

Increasing the amount of mobile alloantigen with infusions of donor leukocytes 
(Fig. 12) has been shown empirically to improve allograft survival in numerous 
experimental transplant models. However, large-scale trials of adjunct leukocyte infusion 
have yielded disappointing results in human organ transplant recipients [92-941. In these 

Table 3 Mechanisms of acquired transplantation tolerance and alloengraftrnent 

Seminal mechanisms (starzl-zinkemagel, 1998) 

Clonal exhaustion-deletion Immune Ignorance 

Alternative mechanisms 

Special cells 

Antibodies 

Cytokine 

Graft secretions 

Antigen presentation 

Anergy 

T -regulatory, suppressor, veto 

Idiotypic, enhancing 

Self-perpetuating profiles 

Soluble HLA antigens 

Defective or deviant 

Absence of second signal 
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Fig. 12 Balance between antigen with access to host organized lymphoid tissue, and the antigen-specific 
cytolytic T cells (CTL) induced at these lymphoid sites. A balance favoring the migratory antigen over the 
antigen-reactive CTL (Upper teeter totter) may be achieved for transplant purposes in some models by 
simply adding adjunct donor leukocytes. In standard clinical practice, however, the desired balance is almost 
always maintained by reducing the specific CTL response with immunosuppression (discussed in text). 
Tilting the balance in the opposite direction results in immunity (lower teeter totter) 

clinical trials, bone marrow cells, or stem cell-enriched peripheral leukocytes, usually were 
given on the same day as organ transplantation under conventional multiple drug 
immunosuppression. In a second review with Zinkemagel [88], it was suggested that the 
heavy post-transplant immunosuppression may have been responsible for the lack of 
efficacy. 

It also was suggested in this review that the worldwide policy of heavy post-transplant 
immunosuppression for conventional organ transplantation was antitolerogenic. Our 
argument was that the strong immunosuppression used to drive the rate of acute rejection 
to near zero systematically subverted the seminal tolerance mechanism of donor leukocyte­
ctpven clonal activation, exhaustion, and deletion. The result was the narrowing of the one 
time only window of opportunity for tolerogenesis in the first few posttransplant weeks 
(Fig. 13). We proposed avoidance of this undesirable consequence of over treatment in all 
conventional and leukocyte-augmented organ recipients by application of 2 therapeutic 
principles, singly or together: recipient pretreatment and minimal post-transplant immu­
nosuppression. 

Minimal post-transplant immunosuppression 

In the experimental organ transplant models of spontaneous tolerance (Fig. 14A), no 
treatment is needed because the anti donor response is too weak to eliminate the donor antigen 
and is exhausted and deleted. The deletional tolerance is then maintained by leukocyte 
microchimerism. In numerous other rodent models, the normal outcome of rejection can be 
regularly converted to the same kind oflifetime tolerance by capping the anti-donor response 
with a few post-transplant doses of a single immunosuppressant [95] (Fig. 14B). However, 
histocompatibility and other confounding parameters in the outbred human population make 
it impossible to predict the effect of such treatment in any given patient. 
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Fig. 13 Weakening or elimination of the clonal response by excessive post-transplant immunosuppression 
to the extent that efficient exhaustion and deletion of the clonal response is prevented. Subsequent graft 
survival is permanently dependent on immunosuppression 

Recipient pretreatment 

By reducing global immune reactivity before arrival of donor antigen, deletion of the anti­
donor response is both easier and highly specific (Fig. 14C). This is what is routinely 
accomplished with the pretransplant cytoablation or cytoreduction of conventional bone 
marrow transplantation, but with the predictable penalty of GVHD. Less drastic conditioning 
with ALG and other lymphoid-depleting antibody preparations has been known since the 
1960's to be an effective form of pretreatment with a relatively low risk of GVHD [10, 28]. 

Combined application of tolerogenic principles 

Beginning in 2001, the therapeutic principles were combined in Pittsburgh for the 
treatment of conventional organ recipients: i.e. without adjunct leukocyte infusions 
(Fig. 15) [96]. A single large dose of anti thymocyte globulin (ATG, ThymoglobulinR) or 
alemtuzumab (CampathR) was infused before graft revascularization. After transplantation, 
treatment was restricted to daily tacrolimus unless breakthrough rejection mandated 
additional agents. After about 4 months, the time between doses was increased if possible 
to every other day or longer intervals (spaced weaning). This strategy drastically changed 
the face of organ transplantation at our center. 

Intestinal-multivisceral transplantation 

The greatest impact was on the procedures with the most troubled histories. Intestinal 
transplantation alone, or as part of an abdominal multi visceral graft. had been a target for 
criticism because of the high short and long-term mortality. With a 25% gain in survival, 
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Fig. 14 Principles of tolerogenic immunosuppression. (Al Experimental organ transplant models of 
spontaneous tolerance (no immunosuppression needed). In these unusual models, the host versus graft 
immune response induced acutely by the migratory donor leukocytes is too weak to eliminate the donor cells 
and is exhausted and deleted. The deletional state induced at the outset is then maintained by 
microchimelism. (B) Organ transplant models in which the recipient response that normally would cause 
rejection (dashed line) is reduced into a deletable range (continuous thin line) with a short course of early 
post-transplant immunosuppression. Neither the mechanisms nor the ultimate result are different than in the 
spontaneous tolerance models of panel A. (e) Models in which the global recipient immune responsiveness 
is weakened in advance, thereby making deletion easier of the subsequently induced donor-specific T cell 
clone. This pretreatment (conditioning) principle is the essential basis of bone marrow transplantation. It has 
not been systematically exploited in organ recipients. Tx = Transplantation 

intestinal transplantation promptly became a genuine clinical service [96, 97]. The improved 
patient and graft survival (Fig. 16) was largely due to avoidance of the infections and 
oncologic complications of heavy immunosuppression. After 3-5 years follow-up of the first 
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Fig. 15 Combination of the two principles shown in Fig. 14B and C in a "tolerance friendly" 
immunosuppression protocol routinely used since 2001 at the University of Pittsburgh Medical Center [96]. 
Lymphoid depletion was done before organ allograft revascularization. Weaning from post-transplant 
monotherapy was systematically attempted (see text). The usually silent graft versus host (GVH) reaction 
depicted in Fig. 7 is not shown here. Tx = Transplantation 
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Fig. 16 The patient and graft survival of the first 89 intestinal or multi visceral allograft recipients treated 
with the tolerogenic immunosuppression shown schematically in Fig. 15. Note that only 8% of the surviving 
patients with functioning grafts are on more than a single immunosuppressant. and that 40% are on spaced 
weaning 



Immunol Res (2007) 38:6-41 

Fig. 17 Course of an intestinal 
recipient who was pretreated with 
A TG and managed 
postoperatively with tacrolimus 
mono therapy. She has been on 
full oral alimentation for nearly 
5 years and has been treated with 
two doses of tacrolimus per week 
for the last 4 years. The xxx's at 
the bottom indicate intestinal 
biopsies. Note the stable 
creatinine (i.e. avoidance of 
tacrolimus nephrotoxicity) with 
this regimen 
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89 ATG-depleted intestinal recipients, only 8% of those with functioning grafts are on more 
than one drug and nearly half are on spaced doses (Fig. 16) [96, 97]. After the switch from 
ATG to alemtuzumab for lymphoid depletion, the results improved again (not shown). 

Figure 17 summarizes the course of a space-weaned 68-year old woman who underwent 
full small bowel transplantation on August 5, 2001 after lymphoid depletion with ATG. 
After the first 4 months of daily tacrolimus dosing, spaced weaning was begun. She 
ultimately settled into the 2 tacrolimus doses per week schedule of tacrolimus monotherapy 
on which she has been maintained for the last 4 years. In a recent biopsy, the karyotyped 
leukocytes of her male donor accounted for about 3% of the total cells of the exquisitely 
preserved Peyer's patches of her engrafted intestine. Her peripheral blood at the time 
showed only microchimerism. 

Lung transplantation 

The other procedure of previous dubious value was lung transplantation in which the one 
year survival was barely 60% in our experience, and lower than that in multicenter registry 
reports. After adoption of the tolerogenic principles, and using alemtuzumab for lymphoid 
depletion, 1 year survival jumped to 90% [98]. 

Kidney transplantation 

The more common procedures of kidney and liver transplantation also were upgraded 
[96, 99, 100], especially after substituting the more potent lymphoid-depleting agent, 
alemtuzumab for ATG in 2002. With both agents, patient and graft survival in adults was 
as good or better than in our historical controls. Approximately 80% of the patients with 
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Fig. 18 Patient and kidney graft survival using alemtuzumab (CampathR) lymphoid depletion and 
minimalistic post-transplant immunosuppression. versus historical experience. The pie shows the current 
immunosuppression of survivors with functioning grafts 

functioning grafts require maintenance treatment with more than one drug and the majority 
are on spaced doses (Fig. IS). 

The "quality of life" gains from minimizing immunosuppression in adults are too 
obvious to dwell on. In pediatric recipients, the growth retardation and other side effects of 
chronic immunosuppression [101] have been all but eliminated [991. After minimum 
follow-up of 2 years, patient survival in our recently reported pediatric experience is 100% 
and graft survival is 97% [99]. All of the patients with functioning grafts are on mono­
therapy, and more than SO% are on every other day or longer dose spacing. Height and 
weight increases during the first post-transplant year of the first 16 patients are shown in 
Fig. 19. 

Liver transplantation in hepatitis virus-free patients 

Infants and children undergoing liver replacement have had the same quality of life benefits as 
kidney recipients. Cadaveric liver transplantation in adults also has yielded good results but 
only when the original hepatic disease was caused by something other than hepatitis C virus 
(HCY) (Fig. 20). In these hepatitis-free adults, there was a high rate of weaning including a 
small number of recipients who had immunosuppression discontinued (Fig. 21). 

However, because the original intention in all of the adult cadaveric liver recipients was 
to stop immunosuppression, the stipulated objective of complete weaning was not con­
sistently achieved. The patient whose course is summarized in Fig. 21 was one of the 
encouraging exceptions. Stepwise total weaning was started after 7 post-transplant months 
and completed after 15 months, with drug freedom for the succeeding 2-1/2 years. 

The HCY -infected liver recipient 

In contrast to these results, the tolerogenic protocol (Fig. 15) was unsatisfactory for adults 
with chronic HCV hepatitis. The rapid decline of patient and graft survival (Fig. 22) was 
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Fig. 19 Height (A) and weight (B) for age and gender Z scores for 16 kidney transplant recipients who have 
born functioning grafts for 2 years or longer under lolerogenic immunosuppression. Reference population 
data is from the 2000 Center for Disease Control, growth data available at www.cdc.gov/growthcharts.By 
permission of Shapiro et aI. [99] 

caused mainly by accelerated HeV recurrence. An explanation for the poor results is 
shown schematically in Fig. 23. As discussed earlier, the typical patient who comes to liver 
transplantation because of chronic HeV hepatitis has been a partially tolerant disease 
carrier for a long time (see also Fig. II E and F), connoting a relatively stable balance 
between HeV antigen and HeV-specific T cells. 

By weakening the T cell restraint on the virus with lymphoid depletion and other 
transplant-related immunosuppression, the balance was disequilibrated [102]. The resulting 
astronomical increases in viral load (Fig. 23) resulted in prompt and widespread infection 
of the new liver. With subsequent drug weaning and recovery of global immune 
responsiveness, the liver was subjected to potential attack by one, the other, or both 
viral-specific and de novo donor-specific T-cell responses (Fig. 23) [102]. 

In our report of this experience, we described a compromise strategy for HeV -infected 
recipients that requires a lifetime commitment to a relatively fixed level of daily 
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immunosuppression that allows prophylactic control of the separate and distinct CTL 
responses [102l. The compromise requires the systematic production of potentially 
infectious HCY carriers, an epidemiologic risk that must be made known to all concerned. 
This unsatisfactory solution to the problem will change only with yet-to-be developed 
drugs or other means to better contain the HCY load . 
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Fig.22 Results in HeY-infected liver recipients who were lymphoid depleted with ATG or alemtuzumab 
and treated with tacroJimus mono therapy from which spaced weaning was attempted. The drastic decline in 
survival was due almost exclusively to accelerated recurrence of hepatitis [6, 102] 
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Fig. 23 Explanation for the loss of poor re~ults shown in Fig. 22 (see text and Refs. [6. 102) 

The history of clinical transplantation: in retrospect 

r recently characterized organ transplantation as "a practical success and an epistemologic 
collapse" [103]. The epistemologic collapse (i.e. failure to understand what was being 
accomplished) was caused by the incon-ect conclusion in the 1960s that organ engraftment 
involved mechanisms other than the donor leukocyte chimerism-associated ones of bone 
man-ow cell transplantation. This en-or had pervasive consequences. First, it distorted the 
interpretation of experimental and clinical observations. Second, it spawned numerous 
derivative dogmas and theories. Exposure of the primal en-or by the microchimerism 
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discoveries of 1991-92 served notice that the entire superstructure of transplantation 
immunology had to be reassessed. 

At a clinical level, the therapeutic advances that had been made empirically in organ 
transplantation could now be viewed as the addition of floors to an increasingly habitable 
house that had been constructed piecemeal without a global architectural blueprint 
(Fig. 24). The house foundation was laid with the demonstration 44 years ago that rejection 
is a highly reversible event that frequently can be succeeded by variable tolerance. Better 
immunosuppressive drugs were developed during the succeeding 4 decades, but the new 
tools were used like sledge hammers for organ transplantation and like scalpels for bone 
marrow transplantation. The detection in 1991 and 1992 of leukocyte chimerism in organ 
recipients, and of the mirror image chimerism in bone marrow recipients, intellectually 
unified these two kinds of transplantation. 

However, efforts to endow organ recipients with the tolerance advantages of bone 
marrow recipients by infusing adjunct leukocytes yielded disappointing results because of 
the self-defeating effects of heavy immunosuppression (Fig. 24). Once it was understood 
how immunosuppression could subvert the essential mechanisms of leukocyte chimerism­
driven tolerance, the timing and dosage of the drug treatment (and of adjunct leukocytes) 
could be adjusted in ways that protected these mechanisms. Now that the pieces of the 
transplantation puzzle were reassembled in their proper places, the fresh insight could be 
put to practical use. 

Clinical tolerance for organ recipients revisited 

The resulting protocol (Fig. 25) was best implemented with live donor transplantation 
because tolerogenic mechanisms could be set in motion well in advance of organ 
transplantation. Three weeks before the organ transplantation , recipients were Iymphoid­
depleted with a single 30 mg dose of alemtuzumab, followed 12 h later by an infusion of 
unfractionated fresh leukocytes obtained by leukopheresis from the G-CSF-conditioned 
organ donor. Daily tacrolimus was administered during the 3 weeks between the cell 
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Fig. 25 Tolerance protocol applied in 2005-2006 based on the concepts summarized from the historical 
perspective of Fig. 24 

infusion and the organ transplantation, and for a limited period thereafter. The interval 
between tacrolimus doses was then increased to every other day or longer. 

The first patient to be treated with this regimen was a 19-year old woman with 
sclerosing cholangitis who received the right liver lobe of her I-ll...A mismatched sister in 
October 2005 (Fig. 26). Low grade increases in transaminases and canulicular enzymes 
developed when tacrolimus doses were reduced from 3 to 2 doses per week after about 
6 months. The differential diagnosis was rejection versus recurrence of sclerosing 
cholangitis. After a short course of prednisone, a maintenance schedule of 3 doses/week 
tacroJimus was settled upon . According to the axiom proposed at the beginning of this 
lecture, the "need for maintenance immunosuppression" defined the extent of her acquired 
tolerance. Determination of this endpoint will take one or 2 years since the effects of 
conditioning with a single infusion of a potent lymphoid-depleting agent, alemtuzumab, 
are long lasting [98,104, lOS]. 

Further experience suggests that space-weaning and maintenance dose finding can be 
done earlier in some cases. In the second patient, a 65-year old liver recipient, tacrolimus 
was stopped 4 weeks after right hepatic lobe transplantation from her HLA-mismatched 
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Fig. 26 Course of the first patient treated by the protocol shown in Fig. 25. Complete drug discontinuance 
has not been possible (see text). TAC = tacrolimus 
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Fig.27 Second patient treated by the protocol in Fig, 25 (see text). The patient has been drug-free for a half 
year 

son, Multiple organ failure had developed secondary to thrombosis of the graft's hepatic 
artery. The ischemic liver graft was successfully rearterialized with recovery of completely 
normal function. She has been off all immunosuppression for a half year (Fig , 27). The 
fourth patient received a liver allograft from her son and was jaundiced for the first several 
weeks because of a biliary complication that was corrected with reoperation. She has been 
on homeopathic or no maintenance immunosuppression for all of the 7 months 
post-transplant course except the first 2 weeks (Fig. 28), 

Three more live donor liver recipients (all HLA mismatched) and 3 live donor kidney 
recipients (2 HLA mismatched, one identical) have had transplantation with this strategy. 
All are at different stages of spaced weaning. None of the nine patients has had sustained 
macrochimerism, This has been a welcome finding. By the time the passenger leukocytes 
of an organ graft anive, the recipient has been partially tolerized (Fig, 29). Since the graft 
passenger leukocytes are na'ive, the circumstances at the time of organ transplantation 
mimic those of a parent to defenseless offspring FI hybrid model [73, 106] in which there 
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corrected at reoperation, Note that little or no immunosuppression was given from the third postoperative 
week onward 
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Fig. 29 Balances of mobile donor antigen (donor leukocytes) and donor-reactive T cells after organ 
transplantation. (A) With organ transplantation alone under the immunosuppression shown in Fig. 15, a 
balance favoring drug-free antigen supremacy over the T cell response induced by passenger leukocytes is 
theoretically most likely if there is a large quantity of persisting donor cells (macrochimerism). A positive 
antigen balance also is possible with the microchimerism but this usually requires continuous 
immunosuppression to weaken the CTL arm. (8) With leukocyte infusion in advance of organ 
transplantation (see Fig. 25), the patient is partially tolerized by the time the second load of donor cells 
(the passenger leukocytes) arrive and boost the tolerogenic process while theoretically increasing the risk of 
GVHD (see text). Preliminary experience with this protocol in liver and kidney recipients has been 
encouraging 

is an increased risk of GVRO. This potential lisk is depicted by the second expansion of 
the inverted GVR response curve at the bottom of Fig. 29. 

From our perspective, sustained macrochimerism in an organ recipient is more apt to 
connote a serious complication than an advantage. Although we have not encountered 
GVRO in any of our nine patients, all recipients treated with this protocol undergo 
reliminary leukopheresis with cryopreservation of the collected cells (Fig. 25). These naive 
recipient cells constitute a safety net, for thawing and re-infusion in the event of GVRO. In 
1993 [52], and in more detail 1 year later [107], we described how infusion of such stored 
cells could quickly switch off an otherwise lethal GVRO. 

What lies ahead 

Collectively, the nine patients described here make up a promising consecutive series of 
organ recipients. As has been emphasized, however, the follow-ups are too short to know 
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Table 4 Transplantation dogmas that require reassessment 

Macrochimerism is the "holy grail" of organ transplantation 

2 Tolerogenesis is more protracted and more difficult to accomplish in humans than in lower species 

3 Organ engraftment occurs by leukocyte chimerism-independent mechanisms 

4 Immune activation does not require the presence of lymphoid organs 

5 Immune responses are generated "directly" in transplanted organs 

6 Passenger leukocytes of organs are uniquely tolerogenic because of their cell surface expression of MHC 
class II or other (e.g. co-stimulatory) molecules 

7 Antigen-specific "memory cells" do not require persistence of the antigen 

how close this protocol is to optimum. In addition, the extent to which the principles of 
such treatment can be applied to cadaveric organ transplantation remains to be determined. 

It also should be emphasized that the paradigm upon which the protocol is based is 
incompatible with numerous dogmas that have made up much of the foundation of trans­
plantation immunology. The first 3 dogmas of the incomplete list in Table 4 have major 
clinical implications. The foremost example is the historical conviction that acquired organ 
tolerance requires sustained macrochimerism [108-11 0]. In the context developed here, 
macrochimerism is equivalent to the microbial infestation of an infectious disease carrier, 
and is fraught with a similar range of risks to the host, with particular reference to GVHD. 

With today's sophisticated research tools, it should be possible to examine the validity, 
or lack thereof, of the listed as well as other suspect dogmas. Alternatively, the vast amount 
of meticulously acquired existing data could be reexamined with a different mind set about 
what these data really mean. Putting the big picture together in this way was, in fact, Bob 
Good's unique talent as a scientist. 

What conclusions and theories ultimately will be validated? Good surely would be content 
with the philosophy of natural science capsulized 275 years ago in six short lines of poetry: 

"All Nature is but Art unknown to thee; 
All Chance direction which thou cans't not see; 
All Discord Harmony not understood; 
All partial Evil universal Good. 
And spite of Pride, in erring Reason's spite, 
One truth is clear, "whatever is, is RIGHT." 
Alexander Pope ("Essay on Man"): I 730A.D. 

Good himself loved poetry. One of my most prized possessions is a gift from him of the 
collected work of Robert Frost. Good's prediction about immunology is contained in the 
last 4 words of his lengthy inscription: " ... the best lies ahead!!". Inside the Frost book 
(page 105), a poem is found entitled "The Road Not Taken". The last 5 lines read: 

. 'J shall be telling this with a sigh 
Somewhere ages and ages hence: 
Two roads diverged in a wood, and I -
I took the one less traveled by, 
And that has made all the difference." 

Through his life, Bob Good chose the tough less-traveled road into the scientific unknown. 
And the road has led today to the Society that now bears his name. 
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