53 research outputs found

    COSPAR Sample Safety Assessment Framework (SSAF).

    Get PDF
    The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders

    The dating of shallow faults in the Earth's crust

    Full text link
    Direct dating of ductile shear zones and calculation of uplift/exhumation rates can be done using various radiometric dating techniques. But radiometric dating of shallow crustal faulting, which occurs in the crust's brittle regime, has remained difficult(1-4) because the low temperatures typical of shallow crusted faults prevent the complete syntectonic mineral recrystallization that occurs in deeper faults. Both old (detrital) and newly grown (authigenic) fine-grained phyllosilicates are thus preserved in shallow fault zones and therefore their radiometric ages reflect a mixture of both mineral populations. Also, the loss of Ar-39 during neutron irradiation in dating of clay minerals can produce erroneously old ages. Here we present a method of characterizing the clay populations in fault gouge, using X-ray modelling, combined with sample encapsulation, and show how it can be used to date near-surface fault activity reliably. We examine fault gouge from the Lewis thrust of the southern Canadian Rockies, which we determine to be similar to 52 Myr old. This result requires the western North America stress regime to have changed from contraction to extension in only a few million years during the Eocene. We also estimate the uplift/exhumation age and sedimentary source of these rocks to be similar to 172 Myr.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62567/1/412172a0.pd

    Modern Subsurface Bacteria in Pristine 2.7 Ga-Old Fossil Stromatolite Drillcore Samples from the Fortescue Group, Western Australia

    Get PDF
    Several abiotic processes leading to the formation of life-like signatures or later contamination with actual biogenic traces can blur the interpretation of the earliest fossil record. In recent years, a large body of evidence showing the occurrence of diverse and active microbial communities in the terrestrial subsurface has accumulated. Considering the time elapsed since Archaean sedimentation, the contribution of subsurface microbial communities postdating the rock formation to the fossil biomarker pool and other biogenic remains in Archaean rocks may be far from negligible.In order to evaluate the degree of potential contamination of Archean rocks by modern microorganisms, we looked for the presence of living indigenous bacteria in fresh diamond drillcores through 2,724 Myr-old stromatolites (Tumbiana Formation, Fortescue Group, Western Australia) using molecular methods based on the amplification of small subunit ribosomal RNA genes (SSU rDNAs). We analyzed drillcore samples from 4.3 m and 66.2 m depth, showing signs of meteoritic alteration, and also from deeper "fresh" samples showing no apparent evidence for late stage alteration (68 m, 78.8 m, and 99.3 m). We also analyzed control samples from drilling and sawing fluids and a series of laboratory controls to establish a list of potential contaminants introduced during sample manipulation and PCR experiments. We identified in this way the presence of indigenous bacteria belonging to Firmicutes, Actinobacteria, and Alpha-, Beta-, and Gammaproteobacteria in aseptically-sawed inner parts of drillcores down to at least 78.8 m depth.The presence of modern bacterial communities in subsurface fossil stromatolite layers opens the possibility that a continuous microbial colonization had existed in the past and contributed to the accumulation of biogenic traces over geological timescales. This finding casts shadow on bulk analyses of early life remains and makes claims for morphological, chemical, isotopic, and biomarker traces syngenetic with the rock unreliable in the absence of detailed contextual analyses at microscale

    Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes

    Get PDF
    Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and pH in the deep-sea sediment were found to severely impact the activity and structure of the microbial community

    Sequence of the hyperplastic genome of the naturally competent Thermus scotoductus SA-01

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many strains of <it>Thermus </it>have been isolated from hot environments around the world. <it>Thermus scotoductus </it>SA-01 was isolated from fissure water collected 3.2 km below surface in a South African gold mine. The isolate is capable of dissimilatory iron reduction, growth with oxygen and nitrate as terminal electron acceptors and the ability to reduce a variety of metal ions, including gold, chromate and uranium, was demonstrated. The genomes from two different <it>Thermus thermophilus </it>strains have been completed. This paper represents the completed genome from a second <it>Thermus </it>species - <it>T. scotoductus</it>.</p> <p>Results</p> <p>The genome of <it>Thermus scotoductus </it>SA-01 consists of a chromosome of 2,346,803 bp and a small plasmid which, together are about 11% larger than the <it>Thermus thermophilus </it>genomes. The <it>T. thermophilus </it>megaplasmid genes are part of the <it>T. scotoductus </it>chromosome and extensive rearrangement, deletion of nonessential genes and acquisition of gene islands have occurred, leading to a loss of synteny between the chromosomes of <it>T. scotoductus and T. thermophilus</it>. At least nine large inserts of which seven were identified as alien, were found, the most remarkable being a denitrification cluster and two operons relating to the metabolism of phenolics which appear to have been acquired from <it>Meiothermus ruber</it>. The majority of acquired genes are from closely related species of the Deinococcus-Thermus group, and many of the remaining genes are from microorganisms with a thermophilic or hyperthermophilic lifestyle. The natural competence of <it>Thermus scotoductus </it>was confirmed experimentally as expected as most of the proteins of the natural transformation system of <it>Thermus thermophilus </it>are present. Analysis of the metabolic capabilities revealed an extensive energy metabolism with many aerobic and anaerobic respiratory options. An abundance of sensor histidine kinases, response regulators and transporters for a wide variety of compounds are indicative of an oligotrophic lifestyle.</p> <p>Conclusions</p> <p>The genome of <it>Thermus scotoductus </it>SA-01 shows remarkable plasticity with the loss, acquisition and rearrangement of large portions of its genome compared to <it>Thermus thermophilus</it>. Its ability to naturally take up foreign DNA has helped it adapt rapidly to a subsurface lifestyle in the presence of a dense and diverse population which acted as source of nutrients. The genome of <it>Thermus scotoductus </it>illustrates how rapid adaptation can be achieved by a highly dynamic and plastic genome.</p

    Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations

    Get PDF
    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from &lt;20 to several thousand years) and depth (171 to 448 m) revealed phylogenetically distinct microbial community subsets that either passed or were retained by a 0.22 mu m filter. Such cells of &lt;0.22 mu m would have been overlooked in previous studies relying on membrane capture. Metagenomes from the three water types were used for reconstruction of 69 distinct microbial genomes, each with &gt;86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the &lt;0.22 mu m populations were generally smaller than their phylogenetically closest relatives, suggesting that small dimensions along with a reduced genome size may be adaptations to oligotrophy. Shallow 'modern marine' water showed community members with a predominantly heterotrophic lifestyle. In contrast, the deeper, 'old saline' water adhered more closely to the current paradigm of a hydrogen-driven deep biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community.Supplementary information available for this article at http://www.nature.com/ismej/journal/v10/n5/suppinfo/ismej2015185s1.html</p

    Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars

    Get PDF
    Lakes existed on Mars later than 3.6 billion years ago, according to sedimentary evidence for deltaic deposition. The observed fluviolacustrine deposits suggest that individual lake-forming climates persisted for at least several thousand years (assuming dilute flow). But the lake watersheds’ little-weathered soils indicate a largely dry climate history, with intermittent runoff events. Here we show that these observational constraints, although inconsistent with many previously proposed triggers for lake-forming climates, are consistent with a methane burst scenario. In this scenario, chaotic transitions in mean obliquity drive latitudinal shifts in temperature and ice loading that destabilize methane clathrate. Using numerical simulations, we find that outgassed methane can build up to atmospheric levels sufficient for lake-forming climates, if methane clathrate initially occupies more than 4% of the total volume in which it is thermodynamically stable. Such occupancy fractions are consistent with methane production by water–rock reactions due to hydrothermal circulation on early Mars. We further estimate that photochemical destruction of atmospheric methane curtails the duration of individual lake-forming climates to less than a million years, consistent with observations. We conclude that methane bursts represent a potential pathway for intermittent excursions to a warm, wet climate state on early Mars
    corecore