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Metabolically active microbial communities in
marine sediment under high-CO2 and low-pH
extremes
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Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid,
supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the
geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment.
So far it remains unclear whether microbial communities that have been detected in such high-CO2

and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological
consequences for the environment are. In this study, RNA-based molecular approaches and
radioactive tracer-based respiration rate assays were combined to study the density, diversity
and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV
hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased
sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of
community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial
community became less diverse with increasing sediment depth and CO2 concentration, indicating
that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based
pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed
that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methano-
trophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not
detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the
potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace
indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very
low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate
reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and pH in the deep-sea
sediment were found to severely impact the activity and structure of the microbial community.
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Introduction

Since the discovery of natural liquid CO2 accumula-
tion and leakage in the Izena Hole hydrothermal
field in the Okinawa Trough in 1990 (Sakai et al.,
1990), similar phenomena have been observed in
other hydrothermal systems at Yonaguni Knoll IV
and Hatoma Knoll in the Okinawa Trough (Inagaki
et al., 2006; Konno et al., 2006; Shitashima et al.,
2008) and in volcanic arc hydrothermal vents of the
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northwest Eifuku seamount in the Mariana arc
(Lupton et al., 2006, 2008). Geochemical data
indicate that the CO2 is derived from magmatic
chambers via liquid–vapor phase separation of
subseafloor hydrothermal fluids (Konno et al.,
2006; Lupton et al., 2006). Vapor-phase fluids
stagnate in the sediment, cool and accumulate
liquid CO2 below the surface seafloor. CO2 hydrates
and sulfur-rich crusts form in the overlying
sediments, which may act as a cap preventing
CO2 migration to the hydrosphere (Inagaki et al.,
2006; Konno et al., 2006; Suzuki et al., 2008).

Numerous studies have demonstrated that pH is
one of the most important factors influencing
microbial energy respiration, physiology and growth
because of its direct effect on enzyme activity and
hence cellular metabolism. However, accurately
measuring pH in deep-sea CO2-seep environments
is difficult because the pressure decrease associated
with sample recovery will change the phase of
CO2 from the liquid and/or dissolved forms to the
gaseous form. Therefore, in order to understand the
geochemical and geophysical nature of liquid CO2-
seep environments, accurate measurements of pH
(and other geochemical variables) require the use of
in situ microsensors or in situ sampling with high-
pressure gas-tight vessels. However, even previous
onboard (ex situ) analyses of porewater from gassy
Yonaguni Knoll IV CO2-seep sediments recovered
with standard push corers showed a pH of B6.5,
which is significantly lower than the ambient
bottom water pH of about 7.2–7.5 (Inagaki et al.,
2006).

Given the extremely high concentration of CO2 in
sediments around hydrothermal CO2 vents, the pH
of the porewater and the overlying seawater, where
CO2-rich fluids reach the bottom waters and get
dispersed with the currents, would be expected
to reach extreme values. The results of direct CO2

deep-sea injection experiments and ecological sur-
veys of elevated CO2 environments around volcanic
vents suggest that changes in seawater chemistry
associated with high concentrations of CO2 may
reduce the biodiversity of benthic ecosystems (Barry
et al., 2004; Hall-Spencer et al., 2008; Tunnicliffe
et al., 2009; Fabricius et al., 2011).

The high-CO2 and low-pH deep-sea environment
is an ideal natural laboratory for addressing some
important ecological questions, such as: how do
microbial and benthic ecosystems associated with
natural CO2 reservoirs respond and adapt to this
extreme environment? Can we detect significant
biological processes that convert CO2 to reduced
carbon compounds (for example, biomass)? Which
types of microorganisms are metabolically active
under extremes of CO2 and pH, and what are their
biogeochemical roles in the natural environment?
This knowledge is critical for determining the
potential ecological impact of CO2 sequestration
in deep-sea sediments (Onstott, 2005; House et al.,
2006).

Previous DNA- and lipid-based molecular ecolo-
gical studies at the Yonaguni Knoll IV hydrothermal
field identified a relatively diverse array of bacterial
and archaeal 16S ribosomal RNA (rRNA) genes, as
well as some functional genes and 13C-depleted lipid
biomarkers, suggesting that one-carbon (that is, CO2

and CH4) biogeochemical processes can occur in CO2-
rich sedimentary environments (Inagaki et al., 2006;
Nunoura et al., 2010). In this study, we focused
on metabolically active microbial communities in
CO2-seep sediment samples obtained from the
Yonaguni Knoll IV hydrothermal field. To character-
ize metabolically active microbial populations in the
CO2-seep sedimentary habitat, we used RNA-based
molecular ecological techniques. Some important
geochemical characteristics, such as pH and the
concentration of CO2, were measured in situ using
microsensors, and potential metabolic sulfate reduc-
tion at various pH conditions was assessed using
rate measurements of radiotracer turnover. These
activity-sensitive analyses expand our knowledge
of microbial life and deep-sea ecosystems under
high-CO2 and low-pH extremes.

Materials and methods

Sample collection
Sediment samples were obtained from the Yonaguni
Knoll IV hydrothermal field of the southern
Okinawa Trough during the SO196 cruise of the
German RV Sonne in March 2008 (Rehder et al.,
2008; Schenke et al., 2008). Using a video-guided
multiple-corer system as well as push corers
deployed on the ROV Quest 4000 (MARUM, Univ.
Bremen), CO2-seep sediment core samples were
taken from the seafloor near the Swallow Chimney
(MUC8: 241 50.8380E, 1221 41.9920E, 1362 m below
sea level (mbsl)) and the Abyss vent (MUC10 located
30 m away from the Abyss Vent: 241 50.7910N, 1221
42.0200E, 1392 mbsl; Dive 201 PC1, PC5 and PC28,
located about 1 m off Abyss vent: 241 50.7810N, 1221
42.0270E, 1382 mbsl), where CO2-rich hydrothermal
activity was previously observed (Inagaki et al.,
2006; Konno et al., 2006; Nunoura et al., 2010).
Sediment cores were also retrieved from a low-CO2-
seepage site about 15 m off the Abyss vent (Dive 203
PC8 and PC11: 241 50.7840N, 1221 42.0360E, B1380
mbsl) and from hydrothermally unaffected marine
sediment (MUC23: 241 50.3550N, 1221 41.7360E,
1324 mbsl) (see Supplementary Figure S1).

After samples were recovered onboard, the sedi-
ment cores (in which CO2 bubbling was still
observed) were immediately subsampled at 4-cm
depth intervals using 2.5 ml-sterilized tip-cut
syringes for subsequent microbiological and geo-
chemical processing. A portion of the sediment was
mixed with RNAlater (Ambion, Austin, TX, USA)
and stored at � 80 1C for subsequent shore-based
analysis of microbial RNA. For microscopic obser-
vations, such as determination of microbial numbers
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and fluorescence in situ hybridization, cells were
fixed with 3% paraformaldehyde for 3 h at 4 1C,
washed twice with phosphate-buffered saline (PBS)
(pH 7.6) and then stored in PBS/ethanol (1:1 (v/v)) at
� 20 1C. For radiotracer incubation experiments,
2.5 cm3 of mini-core sediment was obtained
aseptically using a tip-cut syringe and placed
anaerobically in glass vials containing argon in the
headspace. Anaerobic sediment samples were kept
at 4 1C until analyzed in the laboratory.

Porewater geochemistry
Porewater was extracted from sediment subsamples
using a low-pressure squeezer (argon at 1–4 bar) in a
cold room (B4 1C) onboard the research vessel. While
squeezing, the porewater was filtered through 0.2-mm
Nuclepore filters. An aliquot of the extract was
immediately fixed with zinc acetate and gelatin for
subsequent H2S analysis. The H2S concentrations
were measured onboard photometrically as methylene
blue (Grasshoff et al., 1999) using a Hitachi UV/VIS
spectrophotometer (Hitachi High-Technologies Co.,
Tokyo, Japan). Total alkalinity (TA) was determined
by titration with 0.02 N HCl using a mixture of methyl
red and methylene blue as an indicator. The titration
vessel was bubbled with argon to strip any CO2

and H2S produced during the titration. The IAPSO
(International Association for the Physical Sciences of
the Ocean) seawater standard was used for method
calibration. The porewater sulfate content was deter-
mined using ion chromatography at the IFM-GEO-
MAR laboratories. Again, the IAPSO seawater
standard was used for calibration. Porewater samples
were stored frozen until ion chromatography analysis.

The concentration of dissolved methane was
determined using gas chromatography via the head-
space technique: 3 ml of wet sediment was placed
into a glass vial containing 9 ml of 0.1 M NaOH
solution, tightly crimped and the sediment was
suspended by vigorous shaking for 1 h. Headspace
vials were stored refrigerated before analysis.

The analytical precision and accuracy of all
methods described above was well below 5%.

In situ microsensor measurements
For in situ investigation of the geochemical and
geophysical characteristics of the Yonaguni Knoll IV
hydrothermal field, we deployed an autonomous
microsensor profiler using the ROV Quest 4000
during the SO196 cruise. The profiler module
(Wenzhöfer et al., 2000; de Beer et al., 2006) was
equipped with microsensors for dissolved oxygen,
temperature (Pt100, UST Umweltsensortechnik
GmbH, Geschwenda, Germany), pH, H2S, redox
and pCO2 (Microelectrodes Ltd, Ottawa, Canada).
The temperature and CO2 minisensors had a
diameter of 2 mm. The sensors were calibrated
before deployment. The CO2 sensor was calibrated
in acidified seawater, stripped with N2, to which

aliquots of CO2 saturated seawater were added.
The other sensors had a tip diameter of 50–100 mm,
and were made and calibrated as described pre-
viously (Revsbech and Ward, 1983; Jeroschewski
et al., 1996; de Beer et al., 1997). Positioned at the
sediment surface, the profiler gradually moves the
sensors downward in 250-mm increments over a
total distance of 12.5 cm. The sensor recordings are
stored internally. Readings of known O2 concentra-
tions in the bottom water and anoxic sediment were
used to crosscheck O2 sensor calibration curves.

RNA extraction
Total RNA from MUC8 and Dive 203 PC8 was
extracted from 4 cm3 of RNAlater-containing
frozen sediment using a RNA PowerSoil Total RNA
Isolation Kit (MO BIO Laboratories, Carlsbad, CA,
USA), according to the manufacturer’s protocol.
Immediately after resuspension of the RNA, DNA
was removed by treatment with DNase I (TURBO
DNA-free Kit, Ambion), and DNA removal was
confirmed by negative amplification of archaeal
and bacterial 16S rRNA genes using the Bac27F-
Uni1492R and Arc21F-Uni1492R primer sets,
respectively (DeLong, 1992). The DNA amplification
conditions were as follows: 40 cycles at 98 1C for
10 s, 52 1C for 30 s and 72 1C for 120 s. The RNA
concentration determined by Quant-iT RNA Assay
Kit (Invitrogen, Carlsbad, CA, USA) was less than
ca. 0.1 mg ml� 1 of RNAlater-fixed frozen sediment.
Parallel processing of sediment-free negative
controls resulted in no visible amplification from
the RNA extracts.

Reverse transcription and amplification of archaeal
and bacterial 16S rRNA, and phylogenetic analysis
Reverse transcription (RT) was carried out to
obtain 16S rRNA complementary DNA using the
SuperScript III One-Step RT-PCR System with
Platinum Taq DNA Polymerase (Invitrogen). The
primers for the RT reaction were Bac27F, Arc21F
and Uni1492R (DeLong, 1992). The RT-PCR program
was as follows: 30 min at 50 1C and 2 min at 94 1C,
followed by 40 cycles of 15 s at 94 1C, 30 s at 50 1C
and 90 s at 68 1C. The final elongation step was
increased to 5 min. The amplified 16S crDNA
products were gel-purified, cloned and sequenced
as described previously (Yanagawa et al., 2011).

Similarity among the 16S rRNA sequences was
assessed using the FAST Group II web-based
program (Yu et al., 2006). Sequences that were more
than 97% similar were classified as identical
phylotypes. Homology of the representative phylo-
types was compared using the FASTA program
against sequences in the DDBJ/EMBL/GenBank
databases. The sequences were aligned with closely
related sequences using the CLUSTAL-W program,
followed by manual alignment. Aligned sequences
were checked for chimeras with the Bellerophon v. 3
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(Huber et al., 2004). Phylogenetic affiliations were
then assigned by neighbor-joining analysis using
ARB software (Ludwig et al., 2004). Bootstrap
analyses for 1000 trial replicates were performed to
assign confidence levels to the tree topology.

Pyrosequencing of 16S crDNA
Extracted RNA was reverse-transcribed and ampli-
fied with the primers EUB27F (Amann et al., 1990)
and EUB338Rmix (I: 50-GCTGCCTCCCGTAGGAGT-
30, II: 50-GCAGCCACCCGTAGGTGT-30, III: 50-GCTGC
CACCCGTAGGTGT-30) (Frank et al., 2008) for
bacterial 16S rRNA, and UNIV530Fmix (I: 50-GTGCC
AGCMGCCGCGG-30, II: 50-GTGTCAGCCGCCGCG
G-30) (Hoshino et al., 2011) and ARC912Rmix (I:
50-CCCCCGCCAATTCCTTTAA-30, II: 50-CCCCCGTC
AATTCCTTCAA-30, III: 50-CCCCCGCCAATTTCTTT
AA-30) (Miyashita et al., 2009) for archaeal 16S
rRNA. The 50-end of the forward primers contained
the 454 Life Sciences Adapter (454 Life Sciences,
Branford, CT, USA). The PCR conditions were as
follows: initial denaturation at 94 1C for 3 min; 30
cycles of 94 1C for 30 s, 57 1C for 45 s, 72 1C for 1 min
and a final 2-min extension at 72 1C. The products
were pooled after cycling and cleaned using a
MiniElute PCR purification kit (Qiagen, Valencia,
CA, USA). Only sharp, distinct amplification pro-
ducts with a total yield of 200 ng were subjected to
deep sequencing analysis using a GS FLX pyrose-
quencer (454 Life Sciences). Purification of the
amplified products, quality checks and sequencing
were conducted by Takara Bio Inc. (Shiga, Japan).

All reads, including sample identifier tags and
primer sequences, were first processed with the
Pipeline Initial Process (http://pyro.cme.msu.edu/
init/form.spr), which is a part of the Ribosomal
Database Project (Cole et al., 2009). Parameters for
the pipeline initial process were: forward primer
maximum edit distance¼ 2, maximum number
of N¼ 0, minimum average experiment quality
score¼ 20, reverse primer maximum edit distance¼ 0
and minimum sequence length¼ 150. Taxonomic
classification for each processed read was assigned
using BLAST with a customized computer script
using the ARB SILVA sequence package (Pruesse
et al., 2007) as the database. The Mothur Utility
package (Schloss et al., 2009) was used for statistical
analyses of the 16S rRNA sequence data, and the
operational taxonomic unit (OTU) at 97% cutoff,
Chao-1 estimate (Chao, 1987) and Shannon diversity
index (Krebs, 1989) were calculated. The evenness of
the community structure was estimated by calculating
the Pielou’s evenness index (J0) using the
equation (Pielou, 1966):

J’¼ H’

ln S

where H0 represents the number derived from the
Shannon diversity index and S represents the total
number of OTUs.

Microscopic determination of microbial numbers in
CO2-seep sediment
The number of microbes in CO2-seep sediment
samples was determined using fluorescence micro-
scopic image analysis with SYBR Green I stain
(Morono et al., 2009). Paraformaldehyde-fixed
slurry samples were treated with 1% hydrogen
fluoride solution and gently sonicated at 5 W for
1 min with a UH-50 ultrasonic homogenizer (SMT
Co. Ltd., Tokyo, Japan). An aliquot was filtered with
a 0.2-mm polycarbonate filter (Isopore, Millipore,
Billerica, MA, USA) and the number of SYBR Green
I-stained cells was determined microscopically
using an automated slide-loader system (Morono
and Inagaki, 2010). The acquired images (4140
microscopic fields for each sample) were processed
using MetaMorph software (Molecular Devices,
Downingtown, PA, USA).

The number of cell aggregates was determined by
manual counting on a BX61 fluorescence micro-
scope (Olympus, Tokyo, Japan). Paraformaldehyde-
fixed slurry samples were diluted with 0.01 M
sodium pyrophosphate and gently sonicated for
30 s (UT-104, 100 W Sharp, Osaka, Japan). The
samples were centrifuged and the supernatants were
filtered with 0.2-mm polycarbonate filters. Microbial
cells were immobilized by dipping the polycarbo-
nate filter in 0.2% low-gelling-temperature agarose,
followed by drying at 45 1C. Filters were then
stained with SYBR Green I (diluted 250-fold) for
10 min at room temperature. After rinsing with pure
water, each filter was mounted on a glass slide with
Prolong antifade solution (Molecular Probes,
Eugene, OR, USA) to prevent photobleaching. The
cells on the filter were observed under a fluores-
cence microscope and the number of cell aggregates
was determined by manual counting of 430 micro-
scopic fields for each sample.

Catalyzed reporter deposition-fluorescence in situ
hybridization
Fixed slurry samples of the MUC8 sediment core
were used for catalyzed reporter deposition-fluores-
cence in situ hybridization (CARD-FISH) analysis.
Cells were detached from the sediment matrix using
a protocol described by Kallmeyer et al. (2008) with
slight modifications. Briefly, a 100-ml aliquot of fixed
slurry was diluted with 350 ml of NaCl solution,
mixed with 50 ml of detergent mix (100 mM ethyle-
nediaminetetraacetic acid, 100 mM sodium pyropho-
sphate, 1% (v/v) Tween 80 and 3% NaCl) and
sonicated for 1 min. Fixed microbial cells were
separated from sediment particles by layering a
cushion of 500 ml of 50% (w/v) Nycodenz below the
slurry with a needle and centrifuging at 4000 g for
15 min. The supernatant, including the slurry and
Nycodenz layer interface, was carefully removed,
transferred to a separate vial and filtered through
0.2-mm polycarbonate filters to trap microbial cells.
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Next, CARD-FISH was performed using the
hybridization procedure described by Pernthaler
et al. (2002), with slight modifications. Horseradish
peroxidase-labeled oligonucleotide probes targeting
the general archaea (ARCH915) (Amann et al., 1995),
Desulfosarcina/Desulfococcus bacteria (DSS658)
(Manz et al., 1998) and the SEEP-SRB2 group
(SEEP2-658: 50-TCCACTTCCCTCTCCGGT-30)
(Kleindienst et al., 2012) were used, according to
the published protocols, with slight modifications as
described below.

Cells immobilized on polycarbonate filters were
permeabilized with lysozyme (10 mg ml� 1 in 0.05 M
ethylenediaminetetraacetic acid and 0.1 M Tris-HCl
(pH 7.5)) for 70 min at 37 1C and then digested with
achromopeptidase (60 U ml�1 in 0.01 M NaCl and
0.01 M Tris-HCl (pH 8.0)) for 30 min at 37 1C. The
filters were then treated with 1% H2O2 in methanol
for 30 min at room temperature to deactivate
endogenous peroxidase. Microbial cells were hybri-
dized for 6 h at 46 1C in hybridization buffer
containing an horseradish peroxidase-labeled oligo-
nucleotide probe (final concentration: 0.1 pmol ml� 1)
and 35% (ARCH915) or 45% (DSS658 and SEEP2-
658) formamide solution. The filter was then treated
in a washing buffer (5 mM ethylenediaminetetraace-
tic acid (pH 8.0), 20 mM Tris-HCl (pH 7.5) and 0.01%
sodium dodecyl sulfate) for 10 min at 48 1C, and
subsequently in 1� PBS for 15 min at room tempera-
ture. The filter was incubated in 1/50 fluorochrome-
labeled tyramide solution (TSA direct; PerkinElmer,
Waltham, MA, USA) for 15 min at 46 1C in the dark.
Alexa488- and Cy3-labeled tyramides were used for
the first and second signal amplification, respec-
tively. The filter was then washed in 1� PBS and
dehydrated with ethanol. Fluorescence microscopic
images were collected with an epifluorescent micro-
scope (BX51; Olympus) equipped with a cooled
CCD camera (DP-72; Olympus) or with an LSM
510-META laser scanning confocal microscope
(Carl Zeiss, Jene, Germany).

Potential sulfate reduction rate
Potential metabolic sulfate reduction in the pre-
sence and absence of methane was examined at
various pH conditions through radiotracer incuba-
tion experiments in glass tubes sealed with butyl-
rubber stoppers and screw caps. Slurry samples
used for potential sulfate reduction rate (pSRR)
measurement were prepared in an anoxic glove
chamber filled with N2. Sediment samples (2.5 cm3)
were amended with 5 ml of anoxic artificial seawater
containing 10 mM sodium sulfate. To obtain different
pH values, HCl was added to aliquots of the
medium. The adjusted pH values remained constant
throughout the experiment. Next, 35S-labeled
sodium sulfate (1 MBq) was injected into the slurry
samples, and the samples were incubated horizon-
tally for 35 days at 8 1C with 200 kPa of methane or
nitrogen gas in the headspace. Sulfate reduction was

stopped by adding 20 ml of 20% (w/v) zinc acetate
and the slurry samples were mixed with 20 ml of a
50% (v/v) ethanol–water solution and stored at
� 20 1C until cold distillation of Cr(II)-reduced
sulfur compounds was performed as described
elsewhere (Kallmeyer et al., 2004). Reduced sulfur
compounds were stripped from the sediment as H2S
and carried to tubes containing 7 ml of 5% (w/v)
zinc acetate by a flow of N2. The radioactivity of
trapped sulfide as Zn35S was determined using
liquid scintillation counting by mixing scintillation
cocktail (Lumasafe Plus, PerkinElmer) with the ZnS
(2:1). Potential activity was calculated from the ratio
of radioactive sulfide to total radioactive sulfate
(Fossing and Jørgensen, 1989).

Nucleotide sequence accession numbers
The 16S crDNA gene nucleotide sequences
determined in this study were deposited in the
DDBJ/EMBL/GenBank nucleotide sequence data-
bases under the following accession numbers:
AB663253–AB663295 (bacterial 16S crDNA) and
AB663296–AB663305 (archaeal 16S crDNA).

Results

In situ microsensor measurements and porewater
geochemistry
To measure in situ geochemical characteristics
associated with CO2 seeps, we deployed a micro-
sensor profiler close to the Abyss vent of the
Yonaguni Knoll IV hydrothermal field. The micro-
sensor data of Dives 201 were taken at about 1 and
10 m distance from the vent. Microsensor measure-
ments of redox potential (ORP), H2S concentration
and O2 concentration showed that CO2-seep
sediment is a highly reduced environment and that
oxygen from the overlying seawater does not
penetrate more than 1 millimeter into the sediment.
Concentrations of dissolved inorganic carbon and
CO2 increased substantially with depth. However,
we were unable to precisely determine the concen-
tration of in situ CO2 using the microsensor unit
owing to extraordinarily high CO2 levels, which
presumably reach approximately 1000 to 1700 mM in
a few centimeters below the seafloor (cmbsf). This is
B2 orders of magnitude above the possible calibration
range at 1 atm, thus in situ readings are unreliable.
The pH decreased strongly with depth, reaching a
value of 4.6 at a sediment depth of 6 cm (Table 1).
This decrease in pH is owing to the increasing CO2

concentration in those sediment horizons. In the
bottom seawater overlying the sediment, the in situ
pH directly at the CO2-venting site (pHB5.5) was
significantly lower than at the low-CO2-seep site
(pHB6.6).

After recovery of cores from the CO2-seep sites,
concentrations of dissolved methane, sulfate, H2S
and TA in the porewater were determined onboard
(Figure 1). The profiles from MUC8 and MUC10
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showed that the concentrations of methane and
sulfate increase and decrease with depth, respec-
tively, as far down as tens of centimeters. The
concentration of H2S and TA generally increase with
increasing depth. MUC 8 and 10 show a depletion of
sulfate in the top 10–20 cm, which is not reflected in
the H2S profiles and cannot fully be explained by
the anaerobic oxidation of methane with sulfate, but
may indicate a strong upward transport of sulfate-
depleted vent fluids. Also the presence of dissolved
methane and the high TA in the sulfate reduction
zone near the seafloor (Dive 201, PC1 and PC5) are
indicative of upward fluid and gas transport. These
geochemical characteristics in the CO2-seep areas
around Swallow and Abyss Vent are clearly distinct
from those in the reference sites (for example,
MUC23), where the concentrations of methane and
sulfate and TA were nearly constant at background
seawater levels throughout the cored sediment
samples, and the concentration of H2S was below
the detection limit. The geochemical profile of the
low-seepage core, taken about 15 m from the Abyss
vent (Dive 203), was similar to the MUC23 profile.

Number of microbial cells and CARD-FISH
In MUC8, MUC10 and Dive 201 PC28 samples from
CO2-seep sites, the number of microbes in the upper
10 cm of sediment was generally above 109 cells per
cm3, which was consistent with the number found
in samples from MUC23 at the reference site and
Dive 203 PC8 at the low-CO2-seep site (Figure 1).
The abundance of microbes below 10 cm in the CO2-
seep sediment cores (MUC8 and Dive 201 PC28) was
markedly lower (107 cells per cm3), and was con-
sistent with previous cell count data from CO2-rich
sediments of the Yonaguni Knoll IV hydrothermal
field (Inagaki et al., 2006).

We also evaluated the number of cell aggregates in
the cored sediment, which may indicate the pre-
sence of AOM consortia (Figure 1). Aggregates were
frequently observed in MUC8, MUC10 and Dive 201

PC28 samples from CO2-seep sites, especially in the
near-surface sediments where sulfate was abundant
(Figure 1). The aggregates ranged from 4–20 mm in
diameter (Figures 2a and b), and were morphologi-
cally similar to the anaerobic methanotrophic
archaea (ANME)-sulfate-reducing bacteria (SRB)
consortium that mediates anaerobic oxidation of
methane (Boetius et al., 2000; Orphan et al., 2002;
Knittel and Boetius, 2009). The number of aggre-
gates was 2–3 orders of magnitude lower than the
total number of cells (Figure 1), but each aggregate
contained 210–3700 cells and an average of 1300
cells.

The aggregated cells were visualized using CARD-
FISH with either the ARCH915 or SEEP2-658
probes, but no direct physical connections charac-
teristic of ANME-SRB consortia were observed
in the aggregate structures (Figure 2 and Supple-
mentary Table S1). Many single cells that hybridized
with either the ARCH915 or SEEP2-658 probe
were observed. Single SEEP-SRB2-hybridized cells
occurred together with the aggregates composed
of either SEEP-SRB2- or ARC915-hybridized cells in
samples collected from 6 cmbsf. At a the depth of
30 cm, at which no cell aggregates were observed, all
of the SEEP-SRB2-positive cells were detected as
single cells (Figure 2c). SEEP-SRB1 existed as single
cells hybridized with DSS658, though they were
previously found as AOM consortia partner of
several ANME types (Knittel and Boetius, 2009).
The commonly used probes for ANME-2 were
invalid because of several mismatches with the
majority of ANME-2 sequences detected in Yona-
guni Knoll IV sediment (Supplementary Table S1).

Diversity of metabolically active microbial
communities
We evaluated the metabolic activity of microbial
communities in MUC8 and Dive 203 PC8 samples
using RNA-based molecular ecological approaches.
RNA-based approach generally reflects active and

Table 1 Sample location, in situ pH and temperature.

Core Site Location Latitude Longitude Water
depth
(mbsl)

Core
length
(cmbsf)

pH in porewatera Temperature

0 cmbsf 6 cmbsf Core
bottom

0 cmbsf 6 cmbsf

MUC 8 Swallow
Chimney

CO2 seep with
thick pavement

24150.838’N 122141.992’E 1362 30 ND (ND) ND (ND) ND (ND) ND ND

Dive 201 PC28 Abyss Vent About 1 m off
hydrothermal vent

24150.781’N 122142.027’E 1382 16 5.5 (7.1)b 4.6 (7.4)b ND (7.1)b 3.5 8

Dive 203 PC8 Abyss Vent About 15 m off
hydrothermal vent

24150.784’N 122142.036’E B1380 20 6.6 (7.6)c 4.9 (7.7)c ND (7.7)c 3.0 5.5

MUC 10 Abyss Vent About 30 m off
hydrothermal vent

24150.791’N 122142.020’E 1392 26 ND (7.0) ND (6.4) ND (6.2) ND ND

MUC 23 — Hydrothermally
unaffected sediment

24150.355’N 122141.736’E 1324 26 ND (8.5) ND (7.8) ND (7.9) ND ND

Abbreviations: cmbsf, centimeter below the seafloor; mbsl, meter below sea level; ND, not determined.
aOnboard measurement data of pH are shown in parenthesis.
bThe data were obtained from adjacent core Dive201 PC5.
cThe data were obtained from adjacent core Dive203 PC11.
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living population, because ribosomes are labile and
continuously turn over in cells. Clone library
analysis of reverse-transcribed 16S rRNA (16S
crDNA) showed that, at the CO2-seep site (that is,
MUC8), the surface sediment (top 6 cm), which
consists of elemental sulfur-rich altered clay and
CO2 hydrates (Suzuki et al., 2008), harbors a diverse

array of metabolically active bacteria that include
members of the Delta-, Gamma- and Epsilon-
proteobacteria and the Cytophaga-Flavobacterium-
Bacteroidetes (Figure 3a). In deeper sediments col-
lected at 13 and 30 cmbsf, the bacterial 16S crDNA
clone library data clearly showed that members of
the SEEP-SRB2 group (previously designated as the

Figure 2 Fluorescent microscopic images of cell aggregates from
CO2-seeping sediment of the Swallow Chimney (MUC8). (a, b)
Microbial cells in the sediment at a depth of 6 cm were stained
using CARD-FISH. ARCH915- and SEEP2-658-positive cells are
shown in red and green, respectively. Varied forms of microbial
cells and cell aggregates were observed. Bar indicates 30 mm. (c)
Single-type SEEP2-658-positive cells were detected from the deep
zone at 30 cmbsf. Bar indicates 10 mm.
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Figure 1 Depth profiles of porewater methane, sulfide, sulfate,
TA and number of microbial cells around CO2 seepage from the
Swallow Chimney (a, MUC8), Abyss vent (b, Dive 201; c, Dive
203; and d, MUC10) and reference site (e, MUC23). Microbial cell
number profiles for Dive 201 and Dive 203 were obtained from
PC28 and PC8, respectively. Single cells and cell aggregates were
detected using SYBR Green I staining. The two geochemical
profiles for Dive 201 (about 1 m from the Abyss vent) were
obtained from PC1 and PC5, both of which were adjacent to PC28.
The geochemical data from Dive 203 (about 10 m from the Abyss
Vent) were based on PC11, which was adjacent to PC8. Black
circles, sulfate; blue diamonds, methane; green diamonds,
sulfide; white circles, TA; purple circles, number of single cells;
and red diamonds, number of cell aggregates. Red open diamonds
on left axis denote number of cell aggregates below the detection
limit.
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Eel-2 group) predominate within the Deltaproteo-
bacteria, comprising 70–96% of the total number of
sequence reads. However, also a substantial propor-
tion of SEEP-SRB1 sequences were detected in the
shallow depth, which was consistent with CARD-
FISH detection of DSS658-positive single cells. As
for archaeal communities, we were able to obtain
archaeal 16S rRNA only from a 6-cm-deep horizon
of MUC8 sediment and a surface sediment sample
from Dive 203 PC8. The sequence analysis showed
that ANME-2a and -2c dominated the clone library
from MUC8 (60 and 15% of the total number of
clone sequences, respectively), while members of
Nitrosopumilales within Marine Crenarchaeota
Group-I were predominantly detected in the surface
sediment from Dive 203 PC8 (Figure 3b). Several
phylotypes within Marine Benthic Group-D were

also detected as relatively minor archaeal compo-
nents in MUC8 samples. Detailed phylogenetic
positions of these bacterial and archaeal 16S crDNA
sequences are shown in Supplementary Figures S2
and S3.

Community structure analysis of metabolically active
microbial communities based on pyrosequence data
We determined the structures of the CO2-seep
archaeal and bacterial communities by obtaining
complementary DNA sequences for over 40 000 16S
rRNA amplicons and compared the results with
those for the low-seepage site. The 1245 bacterial
16S rRNA sequences from the CO2-seep sediment at
6 cmbsf (MUC8) clustered into 575 OTUs at the 3%
distance threshold. Chao-1 and Shannon diversity
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Figure 3 Phylogenetic community structures based on 16S crDNA clone libraries of domains. (a) Bacteria and (b) archaea from MUC8
and Dive 203 PC8 samples. The number of clones examined at each depth is indicated to the right in parentheses. The phylogenetic
affiliation of each clone sequence was determined based on the trees shown in the Supplementary Figures S2 and S3. The
Deltaproteobacteria were classified into six major subgroups: (i) Desulfobulbaceae, (ii) SEEP-SRB1 (DSC/DSS), (iii) Desulfobacteriaceae
(excluding SEEP-SRB1), (iv) NB1-j, (v) SEEP-SRB2 and (vi) unclassified Deltaproteobacteria. ND, not detected.

Table 2 Summary of of 16S crDNA-tag sequencing analysis of the metabolically active microbial community in the CO2-seep area of the
Yonaguni Knoll IV hydrothermal field

Library Sample Depth
(cmbsf)

Location Number of
sequences read

Number
of OTUa

Chao 1b Shannon
index (H’)

Pielou’s
index (J)

Bacteria MUC8 6 CO2 seep 1245 575 936 (845–1057) 5.95 0.94
30 CO2 seep 14 176 682 737 (718–766) 3.91 0.60

Dive 203 PC8 2 Low
seepage

2476 1274 2232 (2066–2432) 6.77 0.95

Archaea MUC8 6 CO2 seep 14 941 877 921 (905–944) 4.94 0.73
Dive 203 PC8 2 Low

seepage
10 496 698 722 (712–740) 5.06 0.77

Abbreviations: cmbsf, centimeter below the seafloor; OTUs, operational taxonomic units.
aOTUs defined at 97% sequence similarity.
bThe scores were determined by 97% sequence similarly. The numbers in parenthesis represent 95% confidence interval.
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indices showed that bacterial communities from
surface sediments at the CO2-seep site are generally
less diverse than those in the low-seepage sediments
from Dive 203 PC8 (Table 2). Significant differences
in richness and evenness scores were observed
between shallower and deeper sediments at the
CO2-seep site. In the deeper layers, the number of
OTUs was nearly the same as in the surface
sediment; over 14 000 reads of 16S rRNA fragments
provided a significantly lower diversity index for
the deeper layers than for the surface or low-seepage
samples. The asymptotic shape of the rarefaction
curve indicated that most of the amplifiable
sequence diversities from the CO2-seep sediment
were covered by pyrosequencing of 16S crDNA
(Supplementary Figure S4).

Microbial community composition at the phylum
or class level was determined from pyrosequencing
of 16S crDNA fragments. Major archaeal groups
in surface sediments from the CO2-seep and low-
seepage sites were assigned into Thermoplasmata
and Crenarchaeota Group-I, respectively (Figure 4).
The Marine Benthic Group-D-related Thermoplas-
mata represented a higher proportion of archaeal
pyrosequencing fragments than in the 16S crDNA
clone library (Figure 3), while Methanomicrobia,
including ANME, were in a minority group (5.5%).
The ANME-2a population in the pyrosequence-
based community might be underestimated because
their sequences from the clone library analysis had
at least 1-bp mismatch with ARC912R primer. In the
sample from MUC8, a single sequence phylotype
within the Deltaproteobacteria dominated the bac-
terial community. This uneven bacterial community
structure is consistently reflected in the lower

Pielou’s evenness index in Table 2. Phylogenetic
analysis showed that more than 90% of the bacterial
community sequences were composed of the SEEP-
SRB2 group that represents a cluster of SRB within
the Deltaproteobacteria. These sequences are closely
related to OT-B08.16 (AB252432), which was pre-
viously identified in samples from the Yonaguni
CO2-seep site using DNA-based molecular analysis
(Inagaki et al., 2006). The representative sequence
was found to comprise 495% of all delta proteo-
bacterial sequences from MUC8 CO2-seep samples.

Potential sulfate reduction rates
As previous work suggested that AOM coupled with
sulfate reduction occurs in Yonaguni CO2-seep
sediment (Inagaki et al., 2006), we determined the
pSRRs with and without methane in the slurry
headspace at various pH conditions. Radiotracer
incubation experiments using 35S-labeled sulfate
showed that the pSRR in the presence of methane
was consistently higher than in its absence (tested
with N2 in the headspace). This suggests that
methane can fuel sulfate reduction in this environ-
ment, and that organoclastic SRR from sedimented
organic matter has a minor role. Other potential SR
substrates in the vent fluids may include hydrogen,
but were not tested here.

We evaluated the pSRR with methane in the
headspace under a wide range of pH conditions in
sediment samples from MUC10 (close to Abyss vent)
collected at depths of 10 and 18 cm. The pSRR at
18 cmbsf was significantly lower than at 10 cmbsf,
though the trend with respect to pH was generally
similar. The data indicate that pSRR fueled by
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methane increases with decreasing pH (Figure 5a).
A maximum sulfate reduction activity of
81 nmol cm� 3 per day was observed at pH 3 in 10-
cm-deep sediment.

The pSRR in the presence and absence of methane
was determined at pH 4.5 and 7.5 for different
samples of Swallow vent (MUC 8) and Abyss vent
(Dive 201 PC28—15 m; MUC10—30 m). Methane-
dependent sulfate reduction was observed at both
pH values, and the activity at pH 4.5 was similar
to or slightly higher than that observed at pH 7.5
(Figure 5b).

The pSRRs determined for MUC8 samples from
Swallow vent were significantly lower than those
determined for Dive 201 PC28 and MUC10 from
Abyss vent, which is consistent with the environ-
mental H2S concentration and cell aggregate number
data (Figure 1). In MUC10 samples 30 m off Abyss
vent, a peak in the pSRR at pH 7.5 was observed
at 6 cmbsf (46 nmol cm� 3 per day), whereas at pH
4.5 the peak pSRR occurred at B14 cmbsf
(63 nmol cm� 3 per day). In both samples closer to
the vents (MUC8 and Dive 201 PC28), the pSRR
maxima were observed at sediment surface, and
barely any activity was observed 410 cm.

Discussion

One of the key features of the deep-sea environment
uncovered by this study is the presence of a
metabolically active microbial community in the
high-CO2 low-pH sedimentary habitat. The density,
diversity and metabolic activity of the sediment
microbes decrease toward the CO2-rich deeper zone,
which is composed of liquid CO2, CO2 hydrate and/
or supercritical CO2. This indicates that CO2 and pH
extremes are critical geochemical constraints for
biomes in the marine sedimentary habitat (Nealson,
2006). Our RNA- and biogeochemical-based assess-
ments of microbial composition clearly indicated
that one-carbon compounds, such as methane and
CO2 as well as seawater-derived electron acceptors,

could serve as major carbon and energy sources
in the CO2-seep environment.

Using microsensors in the deep-sea hydrothermal
environment (Table 1), we first demonstrated that
the in situ pH of the bottom seawater and sediment
porewater at the CO2-seep area of the Yonaguni
Knoll IV hydrothermal field is markedly lower
(B4.6) than previously measured onboard, when
samples degassed during recovery (Inagaki et al.,
2006). Considering the range of CO2 concentrations
that can be measured with a microsensor, the in situ
CO2 concentrations in sediment are exceptionally
high, with several tens of mol m� 3. In this study, we
selected relatively soft, non-altered sedimentary
areas associated with CO2 seepage for microsensor
measurements above and beneath the seafloor.
However, visible patches of yellowish elemental
sulfur were observed in the examined sediment
cores (for example, MUC8), and the seafloor sedi-
ment at the Yonaguni Knoll IV hydrothermal field is
widely covered by a CO2-altered pavement structure
that contains significant concentrations of elemental
sulfur (Suzuki et al., 2008). The accumulation of a
hard crust of elemental sulfur has also been
observed in other CO2-seep hydrothermal environ-
ments, such as the Izena Hole and the Hatoma Knoll
in the Okinawa Trough and upon Eifuku and Nikko
seamounts in the Mariana volcanic arc (K Nakamura
et al., unpublished data). Using microsensors, we
observed a linear profile of diffusive sulfide flux
down to 4 cmbsf, indicative of no or very low
sulfate-reducing activity in the CO2-seep uppermost
sediment. This result was inconsistent with the
high pSRR determined in samples near the top of
the sediment from Dive 201 PC28 collected near the
Abyss vent. One conceivable explanation is that the
microbial community in the CO2-seep sedimentary
environment does not kinetically produce sulfide as
the sulfur metabolism metabolic end product, but
instead produces other elemental sulfur com-
pounds. In addition to sulfate reducers, chemo-
lithoautotrophic sulfur oxidizers, such as members
of the Epsilonproteobacteria, were detected in the
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RNA-based sequence library constructed from sam-
ple collected at the top of the sediment. The reduced
sulfur compounds may support some sulfur oxidi-
zers (Inagaki et al., 2002, 2003) that were not
detected in the deeper sediment, possibly owing to
the lack of available electron acceptors (for example,
O2 and nitrate) in the CO2-rich low-pH sediment.

The seafloor sediment in the Yonaguni Knoll IV
hydrothermal field harbors a remarkable number
and diversity of microbes (Inagaki et al., 2006;
Nunoura and Takai, 2009; Nunoura et al., 2010).
Our RNA-based molecular ecological study demon-
strated that the deeper sedimentary habitat, which is
directly influenced by CO2 leakage, is an extremely
harsh environment for many microbes, and thus
harbors only specialized sedimentary acidophilic
microbes. Compared with the microbial diversity at
the methane-seep sediment in the Nankai Trough,
very low diversity scores for 16S rRNA-tagged
sequences were obtained from the CO2-rich sedi-
ment (Nunoura et al., 2012). These results suggest
that only life forms that can physiologically adapt to
high-CO2 and low-pH conditions can survive in this
environment.

The existence of metabolically active ANMEs and
sulfate reducers (for example, SEEP-SRB1, SEEP-
SRB2 and Desulfobulbuceae within the Deltapro-
teobacteria) in upper sediments (B6 cm in depth)
was confirmed by multiple RNA-based approaches.
In addition, radiotracer incubation experiments
indicated that methane-dependent acidophilic sul-
fate reduction potentially occurs in the CO2-seep
sedimentary environment. Previous studies of
ANME communities from methane seeps found that
AOM-related sulfate reduction is inhibited under
acidic conditions (Nauhaus et al., 2005), indicating
that AOM consortia adapted to high CO2 inhabit the
sediments of Yonaguni Knoll IV.

In this context, we found a high sequence
abundance of sulfate reducers within the SEEP-
SRB2 group of the Deltaproteobacteria, which are
commonly present as a relatively minor component
of anoxic methane-seep sediment communities
(for example, Teske et al., 2002; Knittel et al.,
2003; Yanagawa et al., 2011). The dominance of
SEEP-SRB2 group was only reported from surface
sediment underlying Beggiatoa mat in a Gulf of
Mexico hydrocarbon seep (Lloyd et al., 2010). Our
results suggested that they acquired specific meta-
bolic functions that enable them to adapt to the
high-CO2 and low-pH sedimentary habitat. Using
CARD-FISH, we found, however, that the SEEP-
SRB2 bacteria exist as single cells or single cell
aggregates in the shallow depths at which AOM
occurs, and that they are missing the archaeal
partners (Figure 2). We hypothesize that SEEP-
SRB2 bacteria may use multiple electron donors in
the high-CO2 and low-pH sedimentary habitat, for
example, these bacteria use not only methane via the
syntrophic reaction with ANMEs, but probably also
hydrogen or other vent fluid constituents. In the

Yonaguni Knoll IV hydrothermal field, a wide range
of hydrogen concentrations (up to 5.2 mmol kg� 1)
have been measured in venting fluids and sediments
(Konno et al., 2006), representing the heterologous
structure of fluid–gas stagnation that influences the
availability of hydrogen for indigenous microbial
activity. This hypothesis is also supported by the
detection of potentially hydrogenotrophic microbes
such as Epsilonproteobacteria and Hydrogenovibrio
in such sediments (Inagaki et al., 2006; Nunoura
et al., 2010). In contrast, no molecular signals (for
example, 16S rRNA and methyl co-enzyme M
reductase) related to methanogenic archaea have
been detected at the CO2-impacted sites.

Anaerobic oxidation of methane may occur under
a wide range of geochemical and geophysical
conditions, for example, at temperatures ranging
from the freezing point of seawater to 60 1C or more
(Kallmeyer and Boetius, 2004; Lloyd et al., 2006;
Niemann et al., 2006; Holler et al., 2011; Biddle
et al., 2012). Also it was reported to occur at pH
values ranging from neutral to 9–11 at the Lost City
hydrothermal field (Brazelton et al., 2006). In this
study, we found that AOM occurs under conditions
of high CO2 causing low pH of as low as 3–4.5,
mediated by novel types of ANME-2a and sulfate-
reducing partners (SEEP-SRB2) not associating in
cell consortia.
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Environmental regulation of the anaerobic oxidation
of methane: a comparison of ANME-I and ANME-II
communities. Environ Microbiol 7: 98–106.

Nealson KH. (2006). Lakes of liquid CO2 in the deep sea.
Proc Natl Acad Sci USA 103: 13903–13904.
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Supplementary Figure S1. Location of CO2-seep (MUC8, MUC10, Dive 201, and Dive 203) and reference (MUC23) sampling sites.
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Supplementary Figure S2. Phylogenetic trees of bacterial 16S crDNA sequences obtained from the MUC8 and 
Dive 203 PC8 sediment cores. Clones noted in red represent sequences obtained in this study. The tree was 
constructed based on a subset of ~600 bp sequences using the neighbor-joining method. Only one representative of 
each sequence group with >97% identity is shown. Bootstrap values are expressed as percentages determined from 
1,000 trials; the values at the nodes are the values that were greater than 50%. Scale bar represents 10% estimated 
sequence divergence.
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Supplementary Figure S3. Phylogenetic trees of archaeal 16S crDNA sequences obtained from the MUC8 and Dive 203 PC8 sediment cores. Clones 
noted in red represent sequences obtained in this study. The tree was constructed based on a subset of ~600 bp sequences using the neighbor-joining 
method. Only one representative of each sequence group with >97% identity is shown. Bootstrap values are expressed as percentages determined from 
1,000 trials; the values at the nodes are the values that were greater than 50%. Scale bar represents 10% estimated sequence divergence.
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Supplementary Table S1. A list of (CARD-)FISH probes for target cells and the observed morphology of cells in this study.

 Swallow Chimney (MUC 8) 6
cmbsf

 Swallow Chimney (MUC 8)
30 cmbsf

ARCH915 Archaea GTG CTC CCC CGC CAA TTC CT Amann et al., 1995 SIngle cell / Cell aggregate Not detected

SEEP2-658 SEEP-SRB2 Group of Deltaproteobacteria TCC ACT TCC CTC TCC GGT Kleindienst et al., 2012 SIngle cell / Cell aggregate Single cell

DSS658 Desulfosarcina/Desulfococcus branch of Deltaproteobacteria (SEEP-SRB1) TCC ACT TCC CTC TCC CAT Manz et al., 1998 Single cell Not detected

Eel-MS932 ANME-2 (ANME-3) AGC TCC ACC CGT TGT AGT Boetius et al., 2000

ANME-538 ANME-2, limnic AAA, Methanolobus tindarius, Methanococcus aeolicus GGC TAC CAC TCG GGC CGC Treude et al., 2005

ANME2a-647 ANME-2a TCT TCC GGT CCC AAG CCT Knittel et al., 2005

ANME-2c622 ANME-2c CCC TTG GCA GTC TGA TTG Knittel et al., 2005

ANME-2c760 ANME-2c CGC CCC CAG CTT TCG TCC Knittel et al., 2005

ND: Not detected.

NT: Not tested.

NT (2 mismatch) 

NT (2 mismatch)

NT (5 mismatch)

Reference

Cell morphology

Probe Specificity Sequence (5'-3')

NT (2-3 mismatch)

NT (1-2 mismatch)
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