16 research outputs found
The response of tropical rainforests to drought : lessons from recent research and future prospects
Key message: we review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. - Context: tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex.- Aims: herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. - Results: this review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. - Conclusion: the numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance
Current ambient concentrations of ozone in Panama modulate the leaf chemistry of the tropical tree Ficus insipida.
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Tropospheric ozone (O3) is a major air pollutant and greenhouse gas, affecting carbon dynamics, ecological interactions, and agricultural productivity across continents and biomes. Elevated [O3] has been documented in tropical evergreen forests, the epicenters of terrestrial primary productivity and plant-consumer interactions. However, the effects of O3on vegetation have not previously been studied in these forests. In this study, we quantified ambient O3in a region shared by forests and urban/commercial zones in Panama and found levels two to three times greater than in remote tropical sites. We examined the effects of these ambient O3levels on the growth and chemistry of seedlings of Ficus insipida, a regionally widespread tree with high stomatal conductance, using open-top chambers supplied with ozone-free or ambient air. We evaluated the differences across treatments in biomass and, using UPLC-MS-MS, leaf secondary metabolites and membrane lipids. Mean [O3] in ambient air was below the levels that induce chronic stress in temperate broadleaved trees, and biomass did not differ across treatments. However, leaf secondary metabolites - including phenolics and a terpenoid - were significantly downregulated in the ambient air treatment. Membrane lipids were present at lower concentrations in older leaves grown in ambient air, suggesting accelerated senescence. Thus, in a tree species with high O3uptake via high stomatal conductance, current ambient [O3] in Panamanian forests are sufficient to induce chronic effects on leaf chemistry.This research was supported
by the U.S. Environmental Protection Agency (STAR
Fellowship F13F31245), the U.S. National Science Foundation (DEB1135733,
DEB-1405637), the University of Utah's Global Change and
Sustainability Center, and the Smithsonian Tropical Research
Institute
Simulated resilience of tropical rainforests to CO2-induced climate change
How tropical forest carbon stocks might alter in response to changes in climate and atmospheric composition is uncertain. However, assessing potential future carbon loss from tropical forests is important for evaluating the efficacy of programmes for reducing emissions from deforestation and degradation. Uncertainties are associated with different carbon stock responses in models with different representations of vegetation processes on the one hand 1, 2, 3, and differences in projected changes in temperature and precipitation patterns on the other hand 4, 5. Here we present a systematic exploration of these sources of uncertainty, along with uncertainty arising from different emissions scenarios for all three main tropical forest regions: the Americas (that is, Amazonia and Central America), Africa and Asia. Using simulations with 22 climate models and the MOSES–TRIFFID land surface scheme, we find that only in one 5 of the simulations are tropical forests projected to lose biomass by the end of the twenty-first century—and then only for the Americas. When comparing with alternative models of plant physiological processes 1, 2, we find that the largest uncertainties are associated with plant physiological responses, and then with future emissions scenarios. Uncertainties from differences in the climate projections are significantly smaller. Despite the considerable uncertainties, we conclude that there is evidence of forest resilience for all three regions
Plant organ abscission and the green island effect caused by gallmidges (Cecidomyiidae) on tropical trees
Plants exhibit a wide array of inert and induced responses in defense against herbivore attack. Among these the abscission of organs has been argued to be a highly effective mechanism, depending, however, on the herbivore's feeding mode. While consisting of plant tissues, insect induced galls are seen as the extended phenotype of the gall inducer which might circumvent many or most of the plant defenses. There is very little information whether and how far beyond the gall tissue gall inducers might affect plant tissues. A localized impact is likely to leave the abscission of galled organs as a viable defense although at a cost. Here, we report on an instance where the host plant, Neea madeirana (Nyctaginaceae) abscises leaves galled by two species of Bruggmannia (Diptera: Cecidomyiidae), more frequently than ungalled leaves in a rain forest in Amazonia, Brazil. Once on the forest floor the leaves decay quickly, while both gall types show signs of localized maintenance of healthy tissues for a while (the green island effect). However, on the forest floor galls are exposed to a new set of potential natural enemies. Both gall types show a minimum of a five-fold increase in mortality due to pathogens (fungi and bacteria) compared to galls that were retained on the host tree. We discuss the adaptive nature of plant organ abscission as a plant defense against gallers and as a gall inducer adaptive trait
The Main Pollutants and Their Impacts on Agriculture, Ecosystems and Health
International audienc
Recommended from our members
Global Carbon Budget 2015
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005-2014), EFF was 9.0 ± 0.5 GtC yrg'1, ELUC was 0.9 ± 0.5 GtC yrg'1, GATM was 4.4 ± 0.1 GtC yrg'1, SOCEAN was 2.6 ± 0.5 GtC yrg'1, and SLAND was 3.0 ± 0.8 GtC yrg'1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yrg'1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yrg'1 that took place during 2005-2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yrg'1, GATM was 3.9 ± 0.2 GtC yrg'1, SOCEAN was 2.9 ± 0.5 GtC yrg'1, and SLAND was 4.1 ± 0.9 GtC yrg'1. GATM was lower in 2014 compared to the past decade (2005-2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of g'0.6 [range of g'1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870-2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP-2015)