44 research outputs found

    Gene Expression Studies in Major Depression

    Get PDF
    The dramatic technical advances in methods to measure gene expression on a genome-wide level thus far have not been paralleled by breakthrough discoveries in psychiatric disorders—including major depression (MD)—using these hypothesis-free approaches. In this review, we first describe the methodologic advances made in gene expression analysis, from quantitative polymerase chain reaction to next-generation sequencing. We then discuss issues in gene expression experiments specific to MD, ranging from the choice of target tissues to the characterization of the case group. We provide a synopsis of the gene expression studies published thus far for MD, with a focus on studies using mRNA microarray methods. Finally, we discuss possible new strategies for the gene expression studies in MD that circumvent some of the addressed issues

    Association of Polyaminergic Loci With Anxiety, Mood Disorders, and Attempted Suicide

    Get PDF
    The polyamine system has been implicated in a number of psychiatric conditions, which display both alterations in polyamine levels and altered expression of genes related to polyamine metabolism. Studies have identified associations between genetic variants in spermidine/spermine N1-acetyltransferase (SAT1) and both anxiety and suicide, and several polymorphisms appear to play important roles in determining gene expression.We genotyped 63 polymorphisms, spread across four polyaminergic genes (SAT1, spermine synthase (SMS), spermine oxidase (SMOX), and ornithine aminotransferase like-1 (OATL1)), in 1255 French-Canadian individuals who have been followed longitudinally for 22 years. We assessed univariate associations with anxiety, mood disorders, and attempted suicide, as assessed during early adulthood. We also investigated the involvement of gene-environment interactions in terms of childhood abuse, and assessed internalizing and externalizing symptoms as endophenotypes mediating these interactions. Overall, each gene was associated with at least one main outcome: anxiety (SAT1, SMS), mood disorders (SAT1, SMOX), and suicide attempts (SAT1, OATL1). Several SAT1 polymorphisms displayed disease-specific risk alleles, and polymorphisms in this gene were involved in gene-gene interactions with SMS to confer risk for anxiety disorders, as well as gene-environment interactions between childhood physical abuse and mood disorders. Externalizing behaviors demonstrated significant mediation with regards to the association between OATL1 and attempted suicide, however there was no evidence that externalizing or internalizing behaviors were appropriate endophenotypes to explain the associations with mood or anxiety disorders. Finally, childhood sexual abuse did not demonstrate mediating influences on any of our outcomes.These results demonstrate that genetic variants in polyaminergic genes are associated with psychiatric conditions, each of which involves a set of separate and distinct risk alleles. As several of these polymorphisms are associated with gene expression, these findings may provide mechanisms to explain the alterations in polyamine metabolism which have been observed in psychiatric disorders

    Quaking Regulates Hnrnpa1 Expression through Its 3′ UTR in Oligodendrocyte Precursor Cells

    Get PDF
    In mice, Quaking (Qk) is required for myelin formation; in humans, it has been associated with psychiatric disease. QK regulates the stability, subcellular localization, and alternative splicing of several myelin-related transcripts, yet little is known about how QK governs these activities. Here, we show that QK enhances Hnrnpa1 mRNA stability by binding a conserved 3′ UTR sequence with high affinity and specificity. A single nucleotide mutation in the binding site eliminates QK-dependent regulation, as does reduction of QK by RNAi. Analysis of exon expression across the transcriptome reveals that QK and hnRNP A1 regulate an overlapping subset of transcripts. Thus, a simple interpretation is that QK regulates a large set of oligodendrocyte precursor genes indirectly by increasing the intracellular concentration of hnRNP A1. Together, the data show that hnRNP A1 is an important QK target that contributes to its control of myelin gene expression

    Peripheral administration of lactate produces antidepressant-like effects.

    Get PDF
    In addition to its role as metabolic substrate that can sustain neuronal function and viability, emerging evidence supports a role for l-lactate as an intercellular signaling molecule involved in synaptic plasticity. Clinical and basic research studies have shown that major depression and chronic stress are associated with alterations in structural and functional plasticity. These findings led us to investigate the role of l-lactate as a potential novel antidepressant. Here we show that peripheral administration of l-lactate produces antidepressant-like effects in different animal models of depression that respond to acute and chronic antidepressant treatment. The antidepressant-like effects of l-lactate are associated with increases in hippocampal lactate levels and with changes in the expression of target genes involved in serotonin receptor trafficking, astrocyte functions, neurogenesis, nitric oxide synthesis and cAMP signaling. Further elucidation of the mechanisms underlying the antidepressant effects of l-lactate may help to identify novel therapeutic targets for the treatment of depression

    Expression Profiling of a Genetic Animal Model of Depression Reveals Novel Molecular Pathways Underlying Depressive-Like Behaviours

    Get PDF
    The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL) and control Flinders Depression Resistant (FRL) lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7) and serotonergic receptors (Htr1a, Htr2a) in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research

    Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats

    Get PDF
    Interest in astroglial cells is rising due to recent findings supporting dynamic neuron-astrocyte interactions. There is increasing evidence of astrocytic dysfunction in several brain disorders such as depression, schizophrenia or bipolar disorder; importantly these pathologies are characterized by the involvement of the prefrontal cortex and by significant cognitive impairments. Here, to model astrocyte pathology, we injected animals with the astrocyte specific toxin L-a-aminoadipate (L-AA) in the medial prefrontal cortex (mPFC); a behavioral and structural characterization two and six days after the injection was performed. Behavioral data shows that the astrocyte pathology in the mPFC affects the attentional set-shifting, the working memory and the reversal learning functions. Histological analysis of brain sections of the L-AA-injected animals revealed a pronounced loss of astrocytes in the targeted region. Interestingly, analysis of neurons in the lesion sites showed a progressive neuronal loss that was accompanied with dendritic atrophy in the surviving neurons. These results suggest that the L-AA-induced astrocytic loss in the mPFC triggers subsequent neuronal damage leading to cognitive impairment in tasks depending on the integrity of this brain region. These findings are of relevance to better understand the pathophysiological mechanisms underlying disorders that involve astrocytic loss/dysfunction in the PFC.This work was supported by the Marie Curie Fellowship FP7-PEOPLE-2010-IEF 273936, BIAL Foundation Grants 138/2008 and 61/2010, FEDER funds through Operational program for competitiveness factors-COMPETE -, ON2 Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN/FEDER, and by national funds through FCT-Foundation for Science and Technology-project (PTDC/SAU-NSC/118194/2010) and fellowships (SFRH/BPD/66151/2009 and SFRH/BD/89714/2012)

    The role of proteomics in depression research

    Get PDF
    Depression is a severe neuropsychiatric disorder affecting approximately 10% of the world population. Despite this, the molecular mechanisms underlying the disorder are still not understood. Novel technologies such as proteomic-based platforms are beginning to offer new insights into this devastating illness, beyond those provided by the standard targeted methodologies. Here, we will show the potential of proteome analyses as a tool to elucidate the pathophysiological mechanisms of depression as well as the discovery of potential diagnostic, therapeutic and disease course biomarkers

    A putative functional role for oligodendrocytes in mood regulation

    Get PDF
    Altered glial structure and function is implicated in several major mental illnesses and increasing evidence specifically links changes in oligodendrocytes with disrupted mood regulation. Low density and reduced expression of oligodendrocyte-specific gene transcripts in postmortem human subjects points toward decreased oligodendrocyte function in most of the major mental illnesses. Similar features are observed in rodent models of stress-induced depressive-like phenotypes, such as the unpredictable chronic mild stress and chronic corticosterone exposure, suggesting an effect downstream from stress. However, whether oligodendrocyte changes are a causal component of psychiatric phenotypes is not known. Traditional views that identify oligodendrocytes solely as nonfunctional support cells are being challenged, and recent studies suggest a more dynamic role for oligodendrocytes in neuronal functioning than previously considered, with the region adjacent to the node of Ranvier (i.e., paranode) considered a critical region of glial–neuronal interaction. Here, we briefly review the current knowledge regarding oligodendrocyte disruptions in psychiatric disorders and related animal models, with a focus on major depression. We then highlight several rodent studies, which suggest that alterations in oligodendrocyte structure and function can produce behavioral changes that are informative of mood regulatory mechanisms. Together, these studies suggest a model, whereby impaired oligodendrocyte and possibly paranode structure and function can impact neural circuitry, leading to downstream effects related to emotionality in rodents, and potentially to mood regulation in human psychiatric disorders

    Gene Expression Changes in the Prefrontal Cortex, Anterior Cingulate Cortex and Nucleus Accumbens of Mood Disorders Subjects That Committed Suicide

    Get PDF
    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P≤0.01 and fold change±1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain

    A new stress sensor and risk factor for suicide: The T allele of the functional genetic variant in the GABRA6 gene

    Get PDF
    © 2017 The Author(s). Low GABA transmission has been reported in suicide, and GABRA6 rs3219151 T allele has been associated with greater physiological and endocrine stress response in previous studies. Although environmental stress also plays a role in suicide, the possible role of this allele has not been investigated in this respect. In our present study effect of rs3219151 of GABRA6 gene in interaction with recent negative life events on lifetime and current depression, current anxiety, as well as lifetime suicide were investigated using regression models in a white European general sample of 2283 subjects. Post hoc measures for phenotypes related to suicide risk were also tested for association with rs3219151 in interaction with environmental stress. No main effect of the GABRA6 rs3219151 was detected, but in those exposed to recent negative life events GABRA6 T allele increased current anxiety and depression as well as specific elements of suicide risk including suicidal and death-related thoughts, hopelessness, restlessness and agitation, insomnia and impulsiveness as measured by the STOP task. Our data indicate that stress-associated suicide risk is elevated in carriers of the GABRA6 rs3219151 T allele with several independent markers and predictors of suicidal behaviours converging to this increased risk
    corecore