650 research outputs found
Isoscalar dipole strength in ^{208}_{82}Pb_{126}: the spurious mode and the strength in the continuum
Isoscalar dipole (compression) mode is studied first using schematic
harmonic-oscillator model and, then, the self-consistent Hartree-Fock (HF) and
random phase approximation (RPA) solved in coordinate space. Taking ^{208}Pb
and the SkM* interaction as a numerical example, the spurious component and the
strength in the continuum are carefully examined using the sum rules. It is
pointed out that in the continuum calculation one has to use an extremely fine
radial mesh in HF and RPA in order to separate, with good accuracy, the
spurious component from intrinsic excitations.Comment: 19 pages, 2 figure
The genealogy of judgement: towards a deep history of academic freedom
The classical conception of academic freedom associated with Wilhelm von Humboldt and the rise of the modern university has a quite specific cultural foundation that centres on the controversial mental faculty of 'judgement'. This article traces the roots of 'judgement' back to the Protestant Reformation, through its heyday as the signature feature of German idealism, and to its gradual loss of salience as both a philosophical and a psychological concept. This trajectory has been accompanied by a general shrinking in the scope of academic freedom from the promulgation of world-views to the offering of expert opinion
Theory of Two-Dimensional Josephson Arrays in a Resonant Cavity
We consider the dynamics of a two-dimensional array of underdamped Josephson
junctions placed in a single-mode resonant cavity. Starting from a well-defined
model Hamiltonian, which includes the effects of driving current and
dissipative coupling to a heat bath, we write down the Heisenberg equations of
motion for the variables of the Josephson junction and the cavity mode,
extending our previous one-dimensional model. In the limit of large numbers of
photons, these equations can be expressed as coupled differential equations and
can be solved numerically. The numerical results show many features similar to
experiment. These include (i) self-induced resonant steps (SIRS's) at voltages
V = (n hbar Omega)/(2e), where Omega is the cavity frequency, and n is
generally an integer; (ii) a threshold number N_c of active rows of junctions
above which the array is coherent; and (iii) a time-averaged cavity energy
which is quadratic in the number of active junctions, when the array is above
threshold. Some differences between the observed and calculated threshold
behavior are also observed in the simulations and discussed. In two dimensions,
we find a conspicuous polarization effect: if the cavity mode is polarized
perpendicular to the direction of current injection in a square array, it does
not couple to the array and there is no power radiated into the cavity. We
speculate that the perpendicular polarization would couple to the array, in the
presence of magnetic-field-induced frustration. Finally, when the array is
biased on a SIRS, then, for given junction parameters, the power radiated into
the array is found to vary as the square of the number of active junctions,
consistent with expectations for a coherent radiation.Comment: 11 pages, 8 eps figures, submitted to Phys. Rev
Isoscalar Giant Dipole Resonance and Nuclear Matter Incompressibility Coefficient
We present results of microscopic calculations of the strength function,
S(E), and alpha-particle excitation cross sections sigma(E) for the isoscalar
giant dipole resonance (ISGDR). An accurate and a general method to eliminate
the contributions of spurious state mixing is presented and used in the
calculations. Our results provide a resolution to the long standing problem
that the nuclear matter incompressibility coefficient, K, deduced from sigma(E)
data for the ISGDR is significantly smaller than that deduced from data for the
isoscalar giant monopole resonance (ISGMR).Comment: 4 pages using revtex 3.0, 3 postscript figures created by Mathematica
4.
Systematic study of the effect of short range correlations on the form factors and densities of s-p and s-d shell nuclei
Analytical expressions of the one- and two-body terms in the cluster
expansion of the charge form factors and densities of the s-p and s-d shell
nuclei with N=Z are derived. They depend on the harmonic oscillator parameter b
and the parameter which originates from the Jastrow correlation
function. These expressions are used for the systematic study of the effect of
short range correlations on the form factors and densities and of the mass
dependence of the parameters b and . These parameters have been
determined by fit to the experimental charge form factors. The inclusion of the
correlations reproduces the experimental charge form factors at the high
momentum transfers (). It is found that while the parameter
is almost constant for the closed shell nuclei, He, O and
Ca, its values are larger (less correlated systems) for the open shell
nuclei, indicating a shell effect in the closed shell nuclei.Comment: Latex, 21 pages, 6 figures, 1 tabl
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
- …