5 research outputs found

    Tetracycline resistance transmission in Campylobacter is promoted at temperatures resembling the avian reservoir.

    Full text link
    Campylobacter is the causal agent of campylobacteriosis in humans, a self-limiting gastroenteritis. Campylobacteriosis is a zoonosis, commonly transmitted from contaminated chicken meat by either direct consumption or cross contamination during food manipulation. Presence of plasmids encoding for resistance to antibiotics such as tetracycline is common among Campylobacter isolates. In this report, we studied the effect of the temperature in the conjugation frequency of several tet(O) carrying plasmids, providing tetracycline resistance to the recipient cells. The conjugation frequency from donor cells carrying three previously characterized plasmids (pCjA13, pCjA9 and pTet) and from two clinical isolates was determined. Two temperatures, 37 and 42 ºC, mimicking the conditions encountered by C. jejuni in the human and broiler chicken gastrointestinal tracts, respectively, were assessed. Our results clearly indicate that the conjugation process is promoted at high temperature. Accordingly, the transcriptional expression of some putative conjugative apparatus genes is thermoregulated, being induced at 42 ºC. The two plasmids present in the clinical isolates were sequenced and assembled. Both plasmids are highly related among them and to the pTet plasmid. The high identity of the genes putatively involved in the conjugation process among the plasmids is in agreement with the similar behavior regarding the temperature dependency of the conjugative process. This report suggest that conjugation of plasmids carrying antibiotic resistance genes occurs preferentially at temperatures that resemble the gastrointestinal tract of birds, the main reservoir of C. jejuni

    The Genome Sequence of Taurine Cattle:A Window to Ruminant Biology and Evolution

    Get PDF
    To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.Fil: Bovine Genome Sequencing and Analysis Consortium. Bovine Genome Sequencing And Analysis Consortium; Estados UnidosFil: Amadio, Ariel Fernando. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; ArgentinaFil: Poli, Mario Andres. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; Argentin

    An integrated encyclopedia of DNA elements in the human genome.

    Get PDF
    The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research

    Nanoparticles-mediated Brain Imaging and Disease Prognosis by Conventional as well as Modern Modal Imaging Techniques: a Comparison

    No full text
    corecore