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Summary
The human genome encodes the blueprint of life, but the function of the vast majority of its nearly
three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has
systematically mapped regions of transcription, transcription factor association, chromatin
structure, and histone modification. These data enabled us to assign biochemical functions for
80% of the genome, in particular outside of the well-studied protein-coding regions. Many
discovered candidate regulatory elements are physically associated with one another and with
expressed genes, providing new insights into the mechanisms of gene regulation. The newly
identified elements also show a statistical correspondence to sequence variants linked to human
disease, and can thereby guide interpretation of this variation. Overall the project provides new
insights into the organization and regulation of our genes and genome, and an expansive resource
of functional annotations for biomedical research.

The human genome sequence provides the underlying code for human biology. Despite
intensive study, especially in identifying protein coding genes, our understanding of the
genome is far from complete, particularly with regard to noncoding RNAs, alternatively
spliced transcripts, and regulatory sequences. Systematic analyses of transcripts and
regulatory information are essential to the identification of genes and regulatory regions and
are an important resource for the study of human biology and disease. Such analyses can
also provide comprehensive views of the organization and variability of genes and
regulatory information across cellular contexts, species and individuals.

The Encyclopedia of DNA Elements (ENCODE) Project aims to delineate all functional
elements encoded in the human genome1–3. Operationally, we define a functional element as
a discrete genome segment that encodes a defined product (e.g., protein or non-coding
RNA) or displays a reproducible biochemical signature (e.g., protein-binding, or a specific
chromatin structure). Comparative genomic studies suggest that 3–8% of bases are under
purifying (negative) selection 4–8 and therefore may be functional, although other analyses
have suggested much higher estimates 9–11. In a pilot phase covering 1% of the genome, the
ENCODE project annotated 60% of mammalian evolutionarily constrained bases, but also
identified many additional putative functional elements without evidence of constraint2. The
advent of more powerful DNA sequencing technologies now enables whole genome and
more precise analyses with a broad repertoire of functional assays.

Here, we describe production and initial analysis of 1,640 datasets designed to annotate
functional elements in the entire human genome. We integrate results from diverse
experiments within cell types, related experiments involving 147 different cell types, and all
ENCODE data with other resources, such as candidate regions from genome-wide
association studies (GWAS) and evolutionarily constrained regions. Together, these efforts
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reveal important features about the organization and function of the human genome,
including:

1. The vast majority (80.4%) of the human genome participates in at least one
biochemical RNA and/or chromatin associated event in at least one cell type. Much
of the genome lies close to a regulatory event: 95% of the genome lies within 8kb
of a DNA-protein interaction (as assayed by bound ChIP-seq motifs or DNaseI
footprints), and 99% is within 1.7kb of at least one of the biochemical events
measured by ENCODE.

2. Primate-specific elements as well as elements without detectable mammalian
constraint show, in aggregate, evidence of negative selection; thus some of them
are expected to be functional.

3. Classifying the genome into seven chromatin states suggests an initial set of
399,124 regions with enhancer-like features and 70,292 regions with promoter-like
features, as well hundreds of thousands of quiescent regions. High-resolution
analyses further subdivide the genome into thousands of narrow states with distinct
functional properties.

4. It is possible to quantitatively correlate RNA sequence production and processing
with both chromatin marks and transcription factor (TF) binding at promoters,
indicating that promoter functionality can explain the majority of RNA expression
variation.

5. Many non-coding variants in individual genome sequences lie in ENCODE-
annotated functional regions; this number is at least as large as those that lie in
protein coding genes.

6. SNPs associated with disease by GWAS are enriched within non-coding functional
elements, with a majority residing in or near ENCODE-defined regions that are
outside of protein coding genes. In many cases, the disease phenotypes can be
associated with a specific cell type or TF.

ENCODE data production and initial analyses
Since 2007, ENCODE has developed methods and performed a large number of sequence-
based studies to map functional elements across the human genome3. The elements mapped
(and approaches used) include RNA transcribed regions (RNA-seq, CAGE, RNA-PET, and
manual annotation), protein-coding regions (mass spectrometry), TF-binding sites (ChIP-seq
and DNase-seq), chromatin structure (DNase-seq, FAIRE-seq, histone ChIP-seq and
MNase-seq), and DNA methylation sites (RRBS assay) (Box 1 itemizes methods and
abbreviations, Supplementary Table P1 details production statistics)3. To compare and
integrate results across the different laboratories, data production efforts focused on two
selected sets of cell lines, designated “Tier 1” and “Tier 2” (Box 1). To capture a broader
spectrum of biological diversity, selected assays were also executed on a third tier
comprising more than 100 cell types including primary cells. All data and protocol
descriptions are available at http://www.encodeproject.org/, and a “User’s Guide” including
details of cell type choice and limitations was recently published3.
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Box 1

Abbreviation Description

RNA-seq Isolation of RNA sequences, often with different purification techniques to isolate
different fractions of RNA followed by high-throughput sequencing

CAGE Capture of the methylated cap at the 5′ end of RNA, followed by high- throughput
sequencing of a small tag adjacent to the 5′ methylated caps. 5′ methylated caps are
formed at the initiationof transcription, though other mechanisms also methylate 5′ ends
of RNA

RNA-PET Simultaneous capture of RNAs with both a 5′ methyl cap and a poly-A tail, which is
indicative of a full-length RNA. This is then followed by sequencing a short tag from
each end by high- throughput sequencing

ChIP-seq Chromatin Immunoprecipitation followed by sequencing. Specific regions of cross-linked
chromatin, which is genomic DNA complexed with its bound proteins, are selected by
using an antibody to a specific epitope. The enriched sample is then subjected to high-
throughput sequencing to determine the regions in the genome most often bound by the
protein to which the antibody was directed. Most often used are antibodies to any
chromatin-associated epitope, including transcription factors, chromatin binding proteins,
and specific chemical modifications on histone proteins.

DNaseI-seq Adaption of established regulatory sequence assay to modern techniques. The DNaseI
enzyme will preferentially cut live chromatin preparations at sites where nearby there are
specific (non-histone) proteins. The resulting cut points are then sequenced using high
throughput sequencing to determine those sites “hypersensitive” to DNaseI,
corresponding to open chromatin.

FAIRE-seq Formaldehyde Assisted Isolation of Regulatory Elements. FAIRE isolates nucleosome-
depleted genomic regions by exploiting the difference in crosslinking efficiency between
nucleosomes (high) and sequence-specific regulatory factors (low). FAIRE consists of
crosslinking, phenol extraction, and sequencing the DNA fragments in the aqueous phase.

RRBS Reduced Representation Bisulfite Sequencing. Bisulfite treatment of DNA sequence
converts methylated cytosines to uracil. In order to focus the assay and save costs,
specific restriction enzymes that cut around CpG dinucleotides can reduce the genome to
a portion specifically enriched in CpGs. This enriched sample is then sequenced to
quantitatively determine the methylation status of individual cytosines.

Tier 1 Tier 1 cell types were the highest-priority set and comprised three widely-studied cell
lines: K562 erythroleukemia cells; GM12878, a B-lymphoblastoid cell line that is also
part of the 1,000 Genomes project (http://1000genomes.org)55; and the H1 embryonic
stem cell (H1 hESC) line.

Tier 2 The second-priority set of cell types in the ENCODE
project which included HeLa-S3 cervical carcinoma
cells, HepG2 hepatoblastoma cells, and primary (non-
transformed) human umbilical vein endothelial cells
(HUVEC).

Tier 3 Any other ENCODE cell types not in Tier 1 or Tier 2.

Integration methodology
For consistency, data were generated and processed using standardized guidelines, and for
some assays, new quality-control measures were designed (see refs 3,12,
http://encodeproject.org/ENCODE/dataStandards.html and Kundaje, A. Personal
Communication). Uniform data-processing methods were developed for each assay (see
Supplementary Information and Kundaje, A. Personal Communication), and most assay
results can be represented both as signal information, a per-base estimate across the genome
and as discrete elements, regions computationally identified as enriched for signal.
Extensive processing pipelines were developed to generate each representation (M.M.
Hoffman et al., manuscript in preparation, Kundaje, A. Personal Communication). In
addition we developed the irreproducible discovery rate (IDR)13 measure to provide a robust
and conservative estimate of the threshold where two ranked lists of results from biological
replicates no longer agree (i.e., are irreproducible) and we applied this to defining sets of
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discrete elements. We identified, and excluded from most analyses, regions yielding
untrustworthy signals likely to be artifactual (e.g., multi-copy regions). Together, these
regions comprise 0.39% of the genome (see Supplementary Information). The
accompanying poster represents different ENCODE-identified elements and their genome
coverage.

Transcribed and protein-coding regions
We used manual and automated annotation to produce a comprehensive catalogue of human
protein-coding and non-coding RNAs as well as pseudogenes, referred to as the GENCODE
reference gene set14,15 (Supplementary Table U1). This includes 20,687 protein-coding
genes (GENCODE annotation, V7), with on average 6.3 alternatively spliced transcripts (3.9
different protein-coding transcripts) per locus. In total GENCODE annotated exons of
protein coding genes cover 2.94% of the genome or 1.22% for protein-coding exons.
Protein-coding genes span 33.45% from the outermost start to stop codons, or 39.54% from
promoter to poly A site. Analysis of mass spectrometry (MS) data from K562 and GM12878
cell lines yielded 57 confidently-identified unique peptide sequences intergenic relative to
GENCODE annotation. Taken together with evidence of pervasive genome transcription16,
these data indicate that additional protein–coding genes remain to be found.

In addition, we annotated 8,801 automatically derived small RNAs and 9,640 manually
curated long non-coding RNA (lncRNA) loci 17. Comparing lncRNAs to other ENCODE
data indicates that lncRNAs are generated through a pathway similar to that for protein
coding genes17. The GENCODE project also annotated 11,224 pseudogenes, of which 863
were transcribed and associated with active chromatin18.

RNA
We sequenced RNA16 from different cell lines and multiple subcellular fractions to develop
an extensive RNA expression catalogue. Using a conservative threshold to identify regions
of RNA activity, 62% of genomic bases are reproducibly represented in sequenced long
(>200 nucleotides) RNA molecules or GENCODE exons. Of these bases, only 5.5% are
explained by GENCODE exons. The majority of transcribed bases are within or overlapping
annotated genes boundaries (i.e. intronic) and only31% of bases in sequenced transcripts
were intergenic16.

We used CAGE-seq (5′ cap-targeted RNA isolation and sequencing) to identify 62,403
transcription start sites (TSSs) at high confidence (IDR of 0.01) in Tier 1 and 2 cell types. Of
these, 27,362 (44%) are within 100 bp of the 5′ end of a GENCODE-annotated transcript or
previously reported full-length mRNA. The remaining regions predominantly lie across
exons and 3′ UTRs, and some exhibit cell type restricted expression; these may represent
the start sites of novel, cell type-specific transcripts.

Finally, we saw a significant proportion of coding and non-coding transcripts processed into
steady state stable RNAs shorter than 200 nucleotides. These precursors include t-, mi-, sn-
and sno-RNAs and the 5′ termini of these processed products align with the capped 5′ end
tags16.

Regions bound by transcription factors, transcriptional machinery, and other proteins
To directly identify regulatory regions, we mapped the binding locations of 119 different
DNA-binding proteins and a number of RNA polymerase components in 72 cell types using
ChIP-seq (Table 1, Supplementary Table N1, ref 19); 87 (73%) were sequence-specific TFs
(TFSS). Overall, 636,336 binding regions covering 231Mb (8.1%) of the genome are
enriched for regions bound by DNA-binding proteins across all cell types. We assessed each
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protein-binding site for enrichment of known DNA-binding motifs and the presence of novel
motifs. Overall, 86% of the DNA segments occupied by TFSS contained a strong DNA-
binding motif and in most (55%) cases, the known motif was most enriched (Pouya
Kheradpour and Manolis Kellis, personal communication).

Protein-binding regions lacking high or moderate affinity cognate recognition sites have
21% lower median scores by rank than regions with recognition sequences (Wilcoxon rank
sum p-value < 10−16). 82% of the low-signal regions have high-affinity recognition
sequences for other factors. In addition, when ChIP-seq peaks are ranked by their
concordance with their known recognition sequence, the median DNase I accessibility is
two-fold higher in the bottom 20% of peaks than in the upper 80% (Genome Structure
Correction20, GSC p-value <10−16) consistent with previous observations21–24. We
speculate that low signal regions are either lower-affinity sites21 or indirect TF target
regions associated through interactions with other factors (see also refs 25,26).

We organized all the information associated with each TF, including the ChIP-seq peaks,
discovered motifs, and associated histone modification patterns, in FactorBook
(http://www.factorbook.org, 26), a public resource which will be updated as the project
proceeds.

DNaseI hypersensitive sites, footprints and nucleosome-depleted regions
Chromatin accessibility characterized by DNaseI hypersensitivity is the hallmark of
regulatory DNA regions27,28. We mapped 2.89 million unique, non-overlapping DNaseI
hypersensitive sites (DHSs) by DNase-seq in 125 cell types, the overwhelming majority of
which lie distal to TSSs 29. We also mapped 4.8 million sites across 25 cell types that
displayed reduced nucleosomal crosslinking by FAIRE, many of which coincide with DHSs.
In addition, we used micrococcal nuclease to map nucleosome occupancy in GM12878 and
K562 cells 30.

In Tier 1 and Tier 2 cell types, we identified a mean of 205,109 DHSs per cell type (at FDR
1%), encompassing an average of 1.0% of the genomic sequence in each cell type, and 3.9%
in aggregate. On average, 98.5% of the occupancy sites of TFs mapped by ENCODE ChIP-
seq (and, collectively, 94.4% of all 1.1 million TF ChIP-seq peaks in K562) lay within
accessible chromatin defined by DNaseI hotspots29. However, a small number of factors,
most prominently heterochromatin-bound repressive complexes (e.g., the Kap1-SetDB1-
Znf274 complex31,32 encoded by the TRIM28, SETDB1 and ZNF274 genes), appear to
occupy a significant fraction of nucleosomal sites.

Using genomic DNaseI footprinting33,34 on 41 cell types we identified 8.4 million distinct
DNaseI footprints (FDR 1%)25. Our de novo motif discovery on DNaseI footprints
recovered ~90% of known TF motifs, together with hundreds of novel evolutionarily
conserved motifs, many displaying highly cell-selective occupancy patterns similar to major
developmental and tissue-specific regulators.

Regions of histone modifications
We assayed chromosomal locations for up to 12 histone modifications and variants in 46
cell types, including a complete matrix of eight modifications across Tier 1 and Tier 2.
Because modification states may span multiple nucleosomes, which themselves can vary in
position across cell populations, we used a continuous signal measure of histone
modifications in downstream analysis, rather than calling regions (M.M. Hoffman et al.,
manuscript in preparation, http://code.google.com/p/align2rawsignal/). For the strongest,
“peak-like” histone modifications, we used MACS 35 to characterize enriched sites. Table 2
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describes the different histone modifications, their peak characteristics, and a summary of
their known roles (reviewed in refs36–39).

Our data show that global patterns of modification are highly variable across cell types, in
accordance with changes in transcriptional activity. Consistent with prior studies40,41, we
find that integration of the different histone modification information can be used
systematically to assign functional attributes to genomic regions (see below).

DNA methylation
Methylation of cytosine, usually at CpG dinucleotides, is involved in epigenetic regulation
of gene expression. Promoter methylation is typically associated with repression, whereas
genic methylation correlates with transcriptional activity42. We used reduced representation
bisulfite sequencing (RRBS) to quantitatively profile DNA methylation for an average of 1.2
million CpGs in each of 82 cell lines and tissues (8.6% of non-repetitive genomic CpGs),
including CpGs in intergenic regions, proximal promoters, and in intragenic regions (gene
bodies)43, although it should be noted that the RRBS method preferentially targets CpG rich
islands. We found 96% of CpGs exhibited differential methylation in at least one cell type or
tissue assayed (K. Varley et al. Personal Communication), and levels of DNA methylation
correlated with chromatin accessibility. The most variably methylated CpGs are found more
often in gene bodies and intergenic regions, rather than in promoters and upstream
regulatory regions. In addition, we identified an unexpected correspondence between
unmethylated genic CpG islands and binding by P300, a histone acetyltransferase linked to
enhancer activity44.

Because RRBS is a sequence-based assay with single-base resolution, we were able to
identify CpGs with allele-specific methylation consistent with genomic imprinting, and
determined that these loci exhibit aberrant methylation in cancer cell lines (K. Varley et al.
Personal Communication). Furthermore, we detected reproducible cytosine methylation
outside CpG dinucleotides in adult tissues45, providing further support that this non-
canonical methylation event may play important roles in human biology (K. Varley et al.
Personal Communication).

Chromosome-interacting regions
Physical interaction between distinct chromosome regions that can be separated by hundreds
of kb is thought to be important in the regulation of gene expression 46. We used two
complementary chromosome conformation capture (3C)-based technologies to probe these
long-range physical interactions.

A 3C-carbon copy (5C) approach47,48 provided unbiased detection of long-range
interactions with TSSs in a targeted 1% of the genome (the 44 ENCODE pilot regions) in
four cell types (GM12878, K562, HeLa-S3, and H1hESC)49. We discovered hundreds of
statistically significant long-range interactions in each cell type after accounting for
chromatin polymer behavior and experimental variation. Pairs of interacting loci showed
strong correlation between the gene expression level of the TSS and the presence of specific
functional element classes such as enhancers. The average number of distal elements
interacting with a TSS was 3.9, and the average number of TSSs interacting with a distal
element was 2.5, indicating a complex network of interconnected chromatin. Such
interwoven long-range architecture was also uncovered genome-wide using chromatin
interaction analysis with paired-end tag sequencing (ChIA-PET)50 applied to identify
interactions in chromatin enriched by RNA polymerase II (PolII) ChIP from five cell
types51. In K562 cells, we identified 127,417 promoter-centered chromatin interactions
using ChIA-PET, 98% of which were intra-chromosomal. While promoter regions of 2,324
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genes were involved in “single-gene” enhancer-promoter interactions, those of 19,813 genes
were involved in “multi-gene” interaction complexes spanning up to several megabases,
including promoter-promoter and enhancer-promoter interactions51.

These analyses portraya complex landscape of long-range gene-element connectivity across
ranges of hundreds of kb to several Mb, including interactions among unrelated genes
(Supplementary Figure Y1). Furthermore, in the 5C results, 50–60% of long-range
interactions occurred in only one of the four cell lines, indicative of a high degree of tissue
specificity for gene-element connectivity 49.

Summary of ENCODE-identified elements
Accounting for all these elements, a surprisingly large amount of the human genome, 80.4%,
is covered by at least one ENCODE-identified element (detailed in Supplementary Table
Q1). The broadest element class represents the different RNA types covering 62% of the
genome (although the majority is inside of introns or near genes). Regions highly enriched
for histone modifications form the next largest class (56.1%). Excluding RNA elements and
broad histone elements 44.2 % of the genome is covered. Smaller proportions of the genome
are occupied by regions of open chromatin (15.2%) or sites of TF binding (8.1%), with
19.4% covered by at least one DHS or TF ChIP-seq peak across all cell lines. Using our
most conservative assessment, 8.5% of bases are covered by either a TF binding site motif
(4.6%) or a DHS footprint (5.7%). This however is still about 4.5-fold higher than the
amount of protein coding exons, and about 2-fold higher than the estimated amount of pan-
mammalian constraint.

Given that ENCODE did not assay all cell types, or all TFs, and in particular has sampled
few specialized or developmentally restricted cell lineages, these proportions must be
underestimates of the total amount of functional bases. However, many assays were
performed on more than one cell type, allowing assessment of the rate of discovery of new
elements. For both DHSs and CTCF sites, the number of new elements initially increases
rapidly with a steep gradient for the saturation curve and then slows with increasing
numbers of cell types (Supplementary Figure R1 and R2). With the current data, at the
flattest part of the saturation curve, each new cell type adds on average 9,500 DHS elements
(across 106 cell types) and 500 CTCF-binding elements (across 49 cell types), representing
0.45% of the total element number. We modelled saturation for the DHSs and CTCF-
binding sites using a Weibull distribution (r2 > 0.999) and predict saturation at
approximately 4.1 million (S.E. = 108,000) and 185,100 (S.E. = 18,020) sites, respectively,
suggesting that we have discovered around half of the estimated total DHSs. These estimates
represent a lower bound, but reinforce the observation that there is more non-coding
functional DNA than either coding sequence or pan-mammalian constraint.

The impact of selection on functional elements
From comparative genomic studies, at least 3–8% of bases are under purifying (negative)
selection 4–11 indicating that these bases may potentially be functional. We previously found
that 60% of mammalian evolutionarily constrained bases were annotated in the ENCODE
pilot project, but also observed that many functional elements lacked evidence of
constraint2, a conclusion substantiated by others52–54. The diversity and genome-wide
occurrence of functional elements now identified provides an unprecedented opportunity to
further examine the forces of negative selection on human functional sequences.

We examined negative selection using two measures that highlight different periods of
selection in the human genome. The first measure, inter-species, pan-mammalian constraint
(GERP-based scores; 24 mammals8) addresses selection during mammalian evolution. The
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second measure is intra-species constraint estimated from the numbers of variants
discovered in human populations using data from the 1000 Genomes project55 and covers
selection over human evolution. In Figure 1, we plot both these measures of constraint for
different classes of identified functional elements, excluding features overlapping exons and
promoters that are known to be constrained. Each graph also shows genomic background
levels and measures of coding-gene constraint for comparison. Since we plot human
population diversity on an inverted scale, elements that are more constrained by negative
selection will tend to lie in the upper and right hand regions of the plot.

For DNaseI elements (Figure 1B) and bound motifs (Figure 1C) most sets of elements show
enrichment in pan mammalian constraint and decreased human population diversity, though
for some cell types the DNaseI sites do not appear overall to be subject to pan-mammalian
constraint. Bound TF motifs have a natural control from the set of TF motif with equal
sequence potential for binding but without binding evidence from ChIP-seq experiments; in
all cases, the bound motifs show both more mammalian constraint and higher suppression of
human diversity.

Consistent with previous findings, we do not observe genome-wide evidence for pan-
mammalian selection of novel RNA sequences (Panel D). There are also a large number of
elements without mammalian constraint, between 17–90% for TF-binding regions as well as
DHSs and FAIRE regions. Previous studies could not determine whether these sequences
are either biochemically active, but with little overall impact on the organism, or are under
lineage specific selection. By isolating sequences preferentially inserted into the primate
lineage, which is only feasible given the genome-wide scale of this data, we are able to
specifically examine this issue. The majority of primate-specific sequence is due to
retrotransposon activity, but an appreciable proportion is non-repetitive primate-specific
sequence. Of 104,343,413 primate-specific bases (excluding repetitive elements),
67,769,372 (65%) are found within ENCODE-identified elements. Examination of 227,688
variants segregating in these primate specific regions revealed that all classes of elements
(RNA and regulatory) show depressed derived allele frequencies, consistent with recent
negative selection occurring in at least some of these regions (Figure 1E). An alternative
approach examining sequences that are not clearly under pan-mammalian constraint showed
a similar result (Luke Ward and Manolis Kellis, personal communication). This suggests
that an appreciable proportion of the unconstrained elements are lineage specific elements
required for organismal function, consistent with long standing views of recent evolution56,
and the remainder are likely to be “neutral” elements2 which are not currently under
selection, but may still affect cellular or larger scale phenotypes without an effect on fitness.

The binding patterns of TFs are not uniform, and we can correlate both inter-and intra-
species measures of negative selection with the overall information content of motif
positions. The selection on some motif positions is as high as protein coding exons (Figure
1F, Luke Ward and Manolis Kellis, personal communication). These aggregate measures
across motifs show that the binding preferences found in the population of sites are also
relevant to the per-site behavior. By developing a per-site metric of population effect on
bound motifs, we found that highly constrained bound instances across mammals are able to
buffer the impact of individual variation57.

Integration of ENCODE data with known genomic features
Promoter-anchored integration

Many of the ENCODE assays directly or indirectly provide information about the action of
promoters. Focusing on the TSSs of protein-coding transcripts, we investigated the
relationships among different ENCODE assays, in particular testing the hypothesis that
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RNA expression (“output”) can be effectively predicted from patterns of chromatin
modifications or TF binding (“input”). Consistent with previous reports58, we observe two
relatively distinct types of promoters: (1) broad, mainly C+G rich, TATA-less promoters;
and (2) narrow, TATA-box-containing promoters. These promoters have distinct patterns of
histone modifications, and TF-binding sites are selectively enriched in each class
(Supplementary Figure Z1).

We developed predictive models to explore the interaction between histone modifications
and measures of transcription at promoters, distinguishing between modifications known to
be added as a consequence of transcription (such as H3K36me3 and H3K79me2) and other
categories of histone marks59. In our analyses, the best models had two components: an
initial classification component (on/off) and a second quantitative model component. Our
models showed activating acetylation marks (H3K27ac and H3K9ac) are roughly as
informative as activating methylation marks (H3K4me3 and H3K4me2) (Figure 2A).
Although repressive marks, such as H3K27me3 or H3K9me3, show negative correlation
both individually and in the model, removing these marks produces only a small reduction in
model performance. However, for a subset of promoters in each cell line repressive histone
marks (H3K27me3 or H3K9me3) must be used to accurately predict their expression. We
also examined the interplay between the H3K79me2 and H3K36me3 marks, both of which
mark gene bodies, likely reflecting recruitment of modification enzymes by polymerase
isoforms. As described previously, H3K79me2 occurs preferentially at the 5′ ends of gene
bodies and H3K36me3 occurs more 3′, and our analyses support the previous model in
which the H3K79me2 to H3K36me3 transition occurs at the first 3′ splice site60.

Few previous studies have attempted to build qualitative or quantitative models of
transcription genome-wide from TF levels because of the paucity of documented TF-binding
regions and the lack of coordination around a single cell line. We thus examined the
predictive capacity of TF-binding signals for the expression levels of promoters (Figure 2B).
In contrast to the profiles of histone modifications, most TFs show enriched binding signals
in a narrow DNA region near the TSS, with relatively higher binding signals in promoters
with higher CpG content. Most of this correlation could be recapitulated by looking at the
aggregate binding of TFs without specific TF terms. Together, these correlation models
suggest both that a limited set of chromatin marks are sufficient to “explain” transcription
and that a variety of TFs might have broad roles in general transcription levels across many
genes. It is important to note that this is an inherently observational study of correlation
patterns, and is consistent with a variety of mechanistic models with different causal links
between the chromatin, TF and RNA assays. However it does indicate that there is enough
information present at the promoter regions of genes to explain the majority of variation in
RNA expression.

We developed predictive models similar to those used to model transcriptional activity to
explore the relationship between levels of histone modifications and inclusion of exons in
alternately spliced transcripts. Even accounting for expression level, H3K36me3 has a
positive contribution to exon inclusion, while H3K79me2 has a negative contribution61. By
monitoring the RNA populations in the subcellular fractions of K562 cells, we found that
essentially all splicing is co-transcriptional 62, further supporting a link between chromatin
structure and splicing.

Transcription factor-binding site-anchored integration
TF binding sites provide a natural focus around which to explore chromatin properties. TFs
are often multi-functional and can bind a variety of genomic loci with different
combinations and patterns of chromatin marks and nucleosome organization. Hence, rather
than averaging chromatin mark profiles across all binding sites of a TF, we developed a
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clustering procedure, termed the Clustered Aggregation Tool (CAGT), to identify subsets of
binding sites sharing similar but distinct patterns of chromatin mark signal magnitude,
shape, and hidden directionality 30. For example, the average profile of the repressive
histone mark, H3K27me3, over all 55,782 CTCF-binding sites in K562 shows poor signal
enrichment (Figure 3A). However, after grouping profiles by signal magnitude, we found a
subset of 9,840 (17.6%) CTCF-binding sites that exhibit significant flanking H3K27me3
signal. Shape and orientation analysis further revealed that the predominant signal profile for
H3K27me3 around CTCF peak summits is asymmetric, consistent with a boundary role for
some CTCF sites between active and polycomb-silenced domains. Further examples are
provided in Supplementary Figures E5 and E6. For TAF1, predominantly found near TSSs,
the asymmetric sites are orientated with the direction of transcription. However, for distal
sites, such as those bound by GATA1 and CTCF, we also observed a high proportion of
asymmetric histone patterns, although independent of motif directionality. In fact, all TF-
binding datasets in all cell lines show predominantly asymmetric patterns (asymmetry ratio
>0.6) for all chromatin marks but not DNaseI (Figure 3B). This suggests that most TF bound
chromatin events correlate with structured, directional patterns of histone modifications, and
that promoter directionality is not the only source of orientation at these sites.

We also examined nucleosome occupancy relative to the symmetry properties of chromatin
marks around TF-binding sites. Around TSSs, there is usually strong asymmetric
nucleosome occupancy, often accounting for the majority of the histone modification signal
(for instance, see Supplementary Figure E4). However, away from TSSs, there is far less
concordance. For example, CTCF-binding sites typically show arrays of well-positioned
nucleosomes on either side of the peak summit (Supplementary Figure E1)63. Where the
flanking chromatin mark signal is high, the signals are often asymmetric, indicating
differential marking with histone modifications (Supplementary Figure E2 and E3). Thus,
we confirm on a genome-wide scale that TFs can form barriers around which nucleosomes
and histone modifications are arranged in a variety of configurations63–66. Further detail is
explored in refs25,26,30.

Transcription factor co-associations
TF-binding regions are non-randomly distributed across the genome, with respect to both
other features (e.g., promoters) and other TF-binding regions. Within the Tier 1 and 2 cell
lines, we found 3,307 pairs of statistically co-associated factors (P value < 1E-16, GSC)
involving 114 out of a possible 117 factors (97%) (Figure 4A). These include expected
associations, such as Jun and Fos, and some more novel associations, such as TCF7L2 with
HNF4alpha and FoxA267 (a full listing is given in Supplementary Table F1). When one
considers promoter and intergenic regions separately, this changes to 3,201 pairs (116
factors, 99%) for promoters and 1,564 pairs (108 factors, 92%) for intergenic regions, with
some associations more specific to these genomic contexts (e.g., the cluster of HDAC2,
GABPA, CHD2, GTF2F1, MXI1, and MYC in promoter regions and SP1, EP300, HDAC2,
and NANOG in intergenic regions (Figure 4B)). These general and context-dependent
associations lead to a network representation of the co-binding with many interesting
properties, explored in refs 19,25,26. In addition we also identified a set of regions bound by
multiple factors representing “High Occupancy of TFs” (HOT) regions68.

Genome-wide integration
To identify functional regions genome-wide, we next integrated elements independent of
genomic landmarks using either discriminative training methods, where a subset of known
elements of a particular class were used to train a model that was then used to discover more
instances of this class, or using methods in which only data from ENCODE assays were
employed without explicit knowledge of any annotation.
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For discriminative training, we used a three-step process to predict potential enhancers,
described in Supplementary Info and ref 68. Two alternative discriminative models
converged on a set of ~13,000 putative enhancers in K562 cells68. In the second approach,
two methodologically distinct unbiased approaches (see ref 40,69 and M.M. Hoffman et al.,
manuscript in preparation) converged on a concordant set of histone modification and
chromatin-accessibility patterns that can be used to segment the genome in each of the Tier
1 and Tier 2 cell lines, although the individual loci in each state in each cell line are
different. With the exception of RNA polymerase II and CTCF, the addition of TF data did
not substantially alter these patterns. At this stage, we deliberately excluded RNA and
methylation assays, reserving these data as a means to validate the segmentations.

Our integration of the two segmentation methods (M.M. Hoffman et al., manuscript in
preparation) established a consensus set of seven major classes of genome states, described
in Table 3. The standard view of active promoters, with a distinct core promoter region (TSS
and PF states), leading to active gene bodies (T, transcribed state) is rediscovered in this
model (Figure 5A and B). There are three “active” distal states. We tentatively labelled two
as enhancers (predicted enhancers, E, and predicted weak enhancers, WE) due to their
occurrence in regions of open chromatin with high H3K4me1, although they differ in the
levels of marks such as H3K27ac, currently thought to distinguish active from inactive
enhancers. The other active state (CTCF) has high CTCF binding and includes sequences
that function as insulators in a transfection assay. The remaining repressed state (R)
summarises sequences split between different classes of actively repressed or inactive,
quiescent chromatin. We found that the CTCF-binding associated state is relatively invariant
across cell types, with individual regions frequently occupying the CTCF state across all six
cell types (Figure 5C). Conversely, the E and T states have substantial cell-specific
behaviour, whereas the TSS state has a bimodal behaviour with similar numbers of cell-
invariant and cell-specific occurrences. It is important to note that the consensus summary
classes do not capture all the detail discovered in the individual segmentations containing
more states.

The distribution of RNA species across segments is quite distinct, indicating that underlying
biological activities are captured in the segmentation. Polyadenylated RNA is heavily
enriched in gene bodies. Around promoters, there are short RNA species previously
identified as promoter-associated short RNAs (PASRs) (Figure 5B)16,70. Similarly, DNA
methylation shows marked distinctions between segments, recapitulating the known biology
of predominantly unmethylated active promoters (TSS states) followed by methylated gene
bodies42 (T state, Figure 5D). The two enhancer-enriched states show distinct patterns of
DNA methylation, with the less active enhancer state (by H3K27ac/H3K4me1 levels)
showing higher methylation. These states also have an excess of RNA elements without
poly-A tails and methyl-cap RNA as assayed by CAGE sequences compared to matched
intergenic controls, suggesting a specific transcriptional mode associated with active
enhancers71. TFs also showed distinct distributions across the segments (Figure 5B). A
striking pattern is the concentration of TFs in the TSS-associated state. The enhancers
contain a different set of TFs. For example, in K562, the E state is enriched for binding by
the proteins encoded by the EP300, FOS, FOSL1, GATA2, HDAC8, JUNB, JUND, NFE2,
SMARCA4, SMARCB1, SIRT6, and TAL1 genes. We tested a subset of these predicted
enhancers in both Mouse and Fish transgenic models (examples in Figure 6), with over half
of the elements showing activity, often in the corresponding tissue type.

The segmentation provides a linear determination of functional state across the genome, but
not an association of particular distal regions with genes. By using the variation of DNaseI
across cell lines, 39% of E (enhancer associated) states could be linked to a proposed
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regulated gene 29 concordant with physical proximity patterns determined by 5C49 or ChIA-
PET.

To provide a fine-grained regional classification, we turned to a Self Organizing Map
(SOM) to cluster genome segmentation regions based on their assay signal characteristics
(Figure 7). The segmentation regions were initially randomly assigned to a 1,350-state map
in a two-dimensional toroidal space (Figure 7A). This map can be visualised as a two
dimensional rectangular plane onto which the various signal distributions can be plotted. For
instance, the rectangle at the bottom left of Figure 7A shows the distribution of the genome
in the initial randomised map. The SOM was then trained using the 12 different ChIP-seq
and DNase-seq assays in the six cell types previously analyzed in the large-scale
segmentations (i.e. over 72-dimensional space). After training, the SOM clustering was
again visualised in two dimensions, now showing the organized distribution of genome
segments (lower right hand, Figure 7A). Individual data sets associated with the genome
segments in each SOM map unit (hexagonal cells) can then be visualised in the same
framework to learn how each additional kind of data is distributed on the chromatin state
map. Figure 7B shows CAGE/TSS expression data overlaid on the randomly initialised (left)
and trained map (right) panels. In this way the trained SOM highlighted cell type-specific
TSS clusters (bottom panels of Figure 7B), indicating that there are sets of tissue specific
TSSs that are distinguished from each other by subtle combinations of ENCODE chromatin
data. Many of the ultra-fine-grained state classifications revealed in the SOM are associated
with specific gene ontology (GO) terms (right panel of Figure 7C). For instance, the left
panel of Figure 7C, identifies 10 SOM map units enriched with genomic regions associated
with genes associated with the GO term ‘immune response’. The central panel identifies a
different set of map units enriched for the GO term “sequence-specific TF activity”. The two
map units most enriched for this GO term, indicated by the darkest green colouring, contain
genes with segments that are high in H3K27me3 in H1 hESC cells, but that differ in
H3K27me3 levels in HUVEC cells. Gene function analysis with the GO ontology tool
(GREAT72) reveals that the map unit with high H3K27me3 in both cell types is enriched in
TF genes with known neuronal functions, whereas the neighbouring map unit is enriched in
genes involved in body patterning. The genome browser shots at the bottom of Figure 7C
pick out an example region for each of the two SOM map units illustrating the difference in
H3K27me3 signal. Overall, we have 228 distinct GO terms associated with specific
segments across one or more states (Ali Mortazavi, personal communication), and can
assign over one third of genes to a GO annotation solely on the basis of its multi-cellular
histone patterns. Thus the SOM analysis provides a fine-grained map of chromatin data
across multiple cell types, which can then be used to relate chromatin structure to other data-
types at differing levels of resolution (for instance, the large cluster of units containing any
active TSS, its sub-clusters composed of units enriched in TSSs active in only one cell type,
or individual map units significantly enriched for specific GO terms).

The classifications presented here are necessarily limited by the assays and cell lines
studied, and are likely to contain a number of heterogeneous classes of elements.
Nonetheless, robust classifications can be made, allowing a systematic view of the human
genome.

Insights into human genomic variation
We next explored the potential impact of sequence variation on ENCODE functional
elements. We examined allele-specific variation using results from the GM12878 cells that
are derived from an individual (NA12878) sequenced in the 1000 Genomes project, along
with her parents. Since ENCODE assays are predominantly sequence-based, the trio design
allows each GM12878 dataset to be divided by the specific parental contributions at
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heterozygous sites, producing aggregate haplotypic signals from multiple genomic sites. We
examined 193 ENCODE assays for allele-specific biases using 1,409,992 phased,
heterozygous SNPs and 167,096 indels (Figure 8). Alignment biases towards alleles present
in the reference genome sequence were avoided utilising a sequence specifically tailored to
the variants and haplotypes present in NA12878 (a ‘personalised genome’)73. We found
instances of preferential binding towards each parental allele. For example, comparison of
the results from the POLR2A, H3K79me2, and H3K27me3 assays in the region of NACC2
(Figure 8A) shows a strong paternal bias for H3K79me2 and POL2RA and a strong
maternal bias for H3K27me3, suggesting differential activity for the maternal and paternal
alleles.

Figure 8B shows the correlation of selected allele-specific signals across the whole genome.
For instance we find a strong allelic correlation between POL2RA and BCLAF1 binding, as
well as negative correlation between H3K79me2 and H3K27me3, both at genes (below the
diagonal, bottom left) and chromosomal segments (top right). Overall we find that positive
allelic correlations among the 193 ENCODE assays are stronger and more frequent than
negative correlations. This may be due to preferential capture of accessible alleles and/or the
specific histone modification and TF, assays used in the project.

Rare variants, individual genomes and somatic variants
We further investigated the potential functional effects of individual variation in the context
of ENCODE annotations. We divided NA12878 variants into common and rare classes, and
partitioned these into those overlapping ENCODE annotation (Figure 9A, Supplementary
Tables K1 and K2). We also predicted potential functional effects: for protein-coding genes,
these are either non-synonymous SNPs or variants likely to induce loss of function by
frame-shift, premature stop, or splice-site disruption; for other regions, these are variants
that overlap a TF-binding site. We found similar numbers of potentially functional variants
affecting protein-coding genes or affecting other ENCODE annotations, suggesting that
many functional variants within individual genomes lie outside exons of protein-coding
genes. A more detailed analysis of regulatory variant annotation is described in ref 74.

To further study the potential effects of NA12878 genome variants on TF binding regions,
we performed peak-calling using a constructed personal diploid genome sequence for
NA1287873. We aligned ChIP-seq sequences from GM12878 separately against the
maternal and paternal haplotypes. As expected, a greater fraction of reads were aligned than
to the reference genome (see Supplementary Information, Supplementary Figure K1). On
average, approximately 1% of TF-binding sites in GM12878 are detected in a haplotype-
specific fashion. For instance, Figure 9B shows a CTCF-binding site not detected using the
reference sequence that is only present on the paternal haplotype due to a 1-bp deletion (see
also Supplementary Figure K2). As costs of DNA sequencing decrease further, optimized
analysis of ENCODE-type data should use the genome sequence of the individual or cell
being analyzed when possible.

Most analyses of cancer genomes to date have focused on characterizing somatic variants in
protein-coding regions. We intersected four available whole-genome cancer datasets with
ENCODE annotations (Figure 9C, Supplementary Figure L2). Overall somatic variation is
relatively depleted from ENCODE annotated regions, particularly for elements specific to a
cell type matching the putative tumor source (e.g., skin melanocytes for melanoma).
Examining the mutational spectrum of elements in introns for cases where a strand-specific
mutation assignment could be made reveals that there are mutational spectrum differences
between DHSs and unannotated regions (0.06 Fisher’s Exact, Supplementary Figure L3).
The suppression of somatic mutation is consistent with important functional roles of these

Page 13

Nature. Author manuscript; available in PMC 2013 March 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



elements within tumor cells, highlighting a potential alternative set of targets for
examination in cancer.

Common variants associated with human disease and phenotypes
In recent years, GWAS have greatly extended our knowledge of genetic loci associated with
human disease risk and other phenotypes. The output of these studies is a series of SNPs
(“GWAS SNPs”) correlated with a phenotype, although not necessarily the functional
variants. Strikingly, 88% of associated SNPs are either intronic or intergenic75. We
examined 4,860 SNP-phenotype associations for 4,492 SNPs curated in the NHGRI GWAS
catalogue75. We found that 12% of these SNPs overlap TF-occupied regions whereas 34%
overlap DHSs (Figure 10A). Both figures reflect significant enrichments relative to the
overall proportions of 1000 Genomes project SNPs (about 6% and 23%, respectively). Even
after accounting for biases introduced by selection of SNPs for the standard genotyping
arrays, GWAS SNPs show consistently higher overlap with ENCODE annotations (Figure
10A, see Supplementary Information). Furthermore, after partitioning the genome by density
of different classes of functional elements, GWAS SNPs were consistently enriched beyond
all the genotyping SNPs in function-rich partitions, and depleted in function-poor partitions
(see Supplementary Figure M1). GWAS SNPs are particularly enriched in the segmentation
classes associated with enhancers and TSSs across several cell types (see Supplementary
Figure M2).

Examining the SOM of integrated ENCODE annotations (see above), we found 19 SOM
map units showing significant enrichment for GWAS SNPs, including many SOM units
previously associated with specific gene functions, such as the immune response regions.
Thus, an appreciable proportion of SNPs identified in initial GWAS scans are either
functional or lie within the length of an ENCODE annotation (~500 bp on average) and
represent plausible candidates for the functional variant. Expanding the set of feasible
functional SNPs to those in reasonable linkage disequilibrium, up to 71% of GWAS SNPs
have a potential causative SNP overlapping a DNaseI site, and 31% of loci have a candidate
SNP that overlaps a binding site occupied by a TF (see also refs 74,76).

The GWAS catalogue provides a rich functional categorization from the precise phenotypes
being studied. These phenotypic categorizations are non-randomly associated with
ENCODE annotations and there is striking correspondence between the phenotype and the
identity of the cell type or TF used in the ENCODE assay (Figure 10B). For example, five
SNPs associated with Crohn’s disease overlap GATA2-binding sites (P-value 0.003 by
random permutation or 0.001 by an empirical approach comparing to the GWAS-matched
SNPs; see Supplementary information), and fourteen are located in DHSs found in
immunologically relevant cell types. A notable example is a gene desert on chromosome
5p13.1 containing eight SNPs associated with inflammatory diseases. Several are close to or
within DHSs in Th1 and Th2 cells as well as peaks of binding by TFs in HUVECs (Figure
10C). The latter cell line is not immunological, but factor occupancy detected there could be
a proxy for binding of a more relevant factor, such as GATA3, in T-cells. Genetic variants in
this region also affect expression levels of PTGER477, encoding the prostaglandin receptor
EP4. Thus, the ENCODE data reinforce the hypothesis that genetic variants in 5p13.1
modulate the expression of flanking genes, and furthermore provide the specific hypothesis
that the variants affect occupancy of a GATA factor in an allele-specific manner, thereby
influencing susceptibility to Crohn’s disease.

Non-random association of phenotypes with ENCODE cell types strengthens the argument
that at least some of the GWAS lead SNPs are functional or extremely close to functional
variants. Each of the associations between a lead SNP and an ENCODE annotation remains
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a credible hypothesis of a particular functional element class or cell type to explore with
future experiments. Supplementary Tables M1, M2 and M3 list all 14,885 pairwise
associations across the ENCODE annotations. The accompanying papers have a more
detailed examination of common variants with other regulatory information 76.

Conclusions
The unprecedented number of functional elements identified in this study provides a
valuable resource to the scientific community as well as significantly enhances our
understanding of the human genome. Our analyses have revealed many novel aspects of
gene expression and regulation as well as the organization of such information, as illustrated
by the accompanying papers (see http://www.encodeproject.org/ENCODE/pubs.html for
collected ENCODE publications). However, there are still many specific details, particularly
about the mechanistic processes which generate these elements and how and where they
function, that require additional experiments to elucidate.

The large spread of coverage, from our highest resolution, most conservative set of bases
implicated in GENCODE protein coding gene exons (2.9%) or specific protein DNA
binding (8.5%) to the broadest, most general set of marks covering the genome
(approximately 80%) -- with many gradations in between -- presents a spectrum of elements
with different functional properties discovered by ENCODE. 99% of the known bases in the
genome are within 1.7 kbp of any ENCODE element, whereas 95% of bases are within 8 kb
of a bound TF motif or DNaseI footprint. Interestingly, even using the most conservative
estimates, the fraction of bases likely to be involved in direct gene regulation, even though
incomplete, is significantly higher than that ascribed to protein coding exons (1.2%), raising
the possibility that more information in the human genome may be important for gene
regulation than for biochemical function. Many of the regulatory elements are not
constrained across mammalian evolution, which to date has been one of the most reliable
indication of an important biochemical event for the organism. Thus, our data provide
orthologous indicators for suggesting possible functional elements.

Importantly, for the first time we have sufficient statistical power to assess the impact of
negative selection on primate-specific elements, and all ENCODE classes display evidence
of negative selection in these unique to primate elements. Furthermore, even with our most
conservative estimate of functional elements (8.5% of putative DNA:protein binding
regions) and assuming that we have already sampled half of the elements from our TF and
cell type diversity, one would estimate that at a minimum 20% (17% from protein binding,
and 2.9% protein coding gene exons) of the genome participates in these specific functions,
with the likely figure significantly higher.

The broad coverage of ENCODE annotations enhances our understanding of common
diseases with a genetic component, rare genetic diseases, and cancer, as shown by our ability
to link otherwise anonymous associations to a functional element. ENCODE and similar
studies provide a first step towards interpreting the rest of the genome— beyond protein-
coding genes—thereby augmenting common disease genetic studies with testable
hypotheses. Such information justifies performing whole-genome sequencing (rather than
exome only, 1.2% of the genome) on rare diseases and investigating somatic variants in non-
coding functional elements, for instance, in cancer. Furthermore since GWAS analyses
typically associate disease to SNPs in large regions, comparison to ENCODE non-coding
functional elements can help pinpoint putative causal variants in addition to refinement of
location by fine-mapping techniques78. Combining ENCODE data with allele-specific
information derived from individual genome sequences, provides specific insight on the
impact of a genetic variant. Indeed, we believe a significant goal would be to use functional
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data such as that derived from this project to assign every genomic variant to its possible
impact on human phenotypes.

To date, ENCODE has sampled 119 of 1,800 known TFs and general components of the
transcriptional machinery on a limited number of cell types and 13 of more than 60 currently
known histone or DNA modifications across 147 cell types. DNaseI, FAIRE and extensive
RNA assays across subcellular fractionations have been undertaken on many cell types, but
overall these data reflect a minor fraction of the potential functional information encoded in
the human genome. An important future goal will be to enlarge this dataset to additional
factors, modifications and cell types, complementing the other related projects in this area
(e.g., Roadmap Epigenomics Project, http://www.roadmapepigenomics.org/ and
International Human Epigenome Consortium, http://www.ihec-epigenomes.org/). These
projects will constitute foundational resources for human genomics, allowing a deeper
interpretation of the organization of gene and regulatory information and the mechanisms of
regulation and thereby provide important insights in human health and disease.

A full listing of the Supplementary Figures and Tables is provided in the Supplementary file
“ENCODE Supplementary Figures and Tables.docx”. Additional tables are provided as
stand alone files as detailed in the index of “ENCODE Supplementary Figures and
Tables.docx”. The file “ENCODE Supplementary Info.docx” contains detailed analysis
methods and descriptions of code provided, along with descriptions of additional analysis
and figures. The supplementary information is accompanied by a Virtual Machine (VM)
containing the functioning analysis data and code. Further details of the VM are available
from http://encodeproject.org/ENCODE/integrativeAnalysis/VM

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Impact of Selection on ENCODE Functional Elements in Mammals and Human
Populations
Panel A shows the levels of pan-mammalian constraint (mean GERP score; 24 mammals8,
x-axis) compared to diversity, a measure of negative selection in the human population
(mean expected heterozygosity, inverted scale, y-axis) for ENCODE datasets. Each point is
an average for a single dataset. The top right corners have the strongest evolutionary
constraint and lowest diversity. Coding (C), UTR (U), genomic (G), intergenic (IG) and
intronic (IN) averages are shown as filled squares. In each case the vertical and horizontal
cross hairs show representative levels for the neutral expectation for mammalian
conservation and human population diversity respectively. Panel A shows the spread over all
non-exonic ENCODE elements greater than 2.5 kb from TSSs. The inner dashed box
indicates that parts of the plot have been magnified for the surrounding outer panels,
although the scales in the outer plots provide the exact regions and dimensions magnified.
The spread for DHS sites (B) and RNA elements (D) are shown in the plots on the left. RNA
elements are either long novel intronic (dark green) or long intergenic (light green) RNAs.
The horizontal cross hairs are colour coded to the relevant dataset in panel D. Panel C shows
the spread of TF motif instances either in regions bound by the TF (orange points) or the
corresponding unbound motif matches in grey, with bound and unbound points connected
with an arrow in each case showing that bound sites are generally more constrained and less
diverse. Panel E shows the derived allele frequency spectrum for primate specific elements
with variations outside ENCODE elements in black and variations covered by ENCODE
elements in red. The increase in low frequency alleles compared to background is indicative
of negative selection occurring in the set of variants annotated by the ENCODE data. Panel
F shows aggregation of mammalian constraint scores over the glucocorticoid receptor (GR)
TF motif in bound sites, showing the expected correlation with the information content of
bases in the motif.
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Figure 2. Modelling Transcription Levels from Histone Modification and TF-Binding Patterns
Panels A and B show the correlative models between either histone modifications or TFs,
respectively, and RNA production as measured by CAGE tag density at TSSs in K562. In
each case the scatter plot shows the output of the correlation models (x-axis) compared to
observed values (y-axis). The bar graphs show the most important histone modifications (A)
or TFs (B) in both the initial classification phase (upper bar graph) or the quantitative
regression phase (lower bar graph), with larger values indicating increasing importance of
the variable in the model. Further analysis of other cell lines and RNA measurement types
are reported elsewhere59,79.
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Figure 3. Patterns and Asymmetry of Chromatin Modification at Transcription Factor-binding
Sites
Panel A shows the results of clustered aggregation of H3K27me3 modification signal
around CTCF binding sites (a multi-functional protein involved with chromatin structure).
The first three left-most plots show the signal behaviour of the histone modification over all
sites (top) and then split into the high and low signal components. The high signal
component is then decomposed further into six different shape classes on the right (see ref 30

for details). The shape decomposition process is strand aware. Panel B summarises shape
asymmetry for DNase1, nucleosome and histone modification signals by plotting an
asymmetry ratio for each signal over all TF binding sites. All histone modifications
measured in this study show predominantly asymmetric patterns at TF binding sites.
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Figure 4. Co-association between Transcription Factors
Panel A shows significant co-associations of TF pairs using the GSC statistic across the
entire genome in K562 cells. The colour strength represents the extent of association (red
(strongest) through orange to yellow (weakest)), whereas the depth of colour represents the
fit to the GSC20 model (white meaning that the statistical model is not appropriate) as
indicated by the key. The majority of TFs have a non-random association to other TFs, and
these associations are dependent on the genomic context, meaning that once the genome is
separated into promoter proximal and distal regions, the overall levels of co-association
decrease, but more specific relationships are uncovered. Panel B illustrates three classes of
behaviour. The first column shows a set of associations whose strength is independent of
location in promoter and distal regions while the second shows a set of TFs which have
stronger associations in promoter-proximal regions. Both these examples are from data in
K562 cells and are highlighted on the genome wide coassociation matrix (panel A) by the
labelled boxes A and B, respectively. The third column shows a set of TFs that show
stronger association in distal regions (in the H1 hESC cell line).
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Figure 5. Integration of ENCODE Data by Genome-wide Segmentation
Panel A shows an illustrative region with the two segmentations methods (ChromHMM and
Segway) in a dense view and the combined segmentation expanded to show each state in
GM12878, beneath a compressed view of the GENCODE gene annotations. Note that at this
level of zoom and genome browser resolution, some segments appear to overlap although
they do not. Segmentation classes are named and coloured according to the scheme in Table
3. Beneath the segmentations are shown each of the normalised signals that were used as the
input data for the segmentations. Open Chromatin signals from the DNase 1-seq and FAIRE
assays are shown in blue, signal from histone modification ChIP-seq in red and TF ChIP-seq
signal for Pol II and CTCF in green. The mauve ChIP-seq control signal (“Input control”) at
the bottom was also included as an input to the segmentation. Panel B shows the association
of selected TF (left) and RNA (right) elements in the combined segmentation states (x-axis)
expressed as an observed/expected ratio for each combination of TF or RNA element and
segmentation class using the heatmap scale shown in the keybesides each heatmap. Panel C
shows the variability of states between cell lines, showing the distribution of occurrences of
the state in the 6 cell lines at specific genome locations — from unique to one cell line to
ubiquitous in all six cell lines for five states (CTCF, E, T, TSS, and R). Panel D shows the
distribution of the level of methylation at individual sites from RRBS analysis in GM12878
across the different states, showing the expecting hypomethylation at TSSs and
hypermethylation of genes bodies (T state) and repressed (R) regions.

Page 32

Nature. Author manuscript; available in PMC 2013 March 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6. Experimental Characterisation of Segmentations
Randomly sampled E state segments (see table 3) from the K562 segmentation were cloned
for mouse- and fish-based transgenic enhancer assays. Panel A shows a representative LacZ-
stained transgenic e11.5 mouse embryo obtained with construct hs2065 (EN167,
chr10:46,052,882-46,055,670, GRCh37). Highly reproducible staining in the blood vessels
was observed in 9 out of 9 embryos resulting from independent transgenic integration
events. Panel B shows a representative green fluorescent protein reporter transgenic medaka
fish obtained from a construct with a basal hsp70 promoter on meganuclease based
transfection. Reproducible transgenic expression in the circulating nucleated blood cells and
the endothelial cell walls was seen in 81 out of 100 transgenic tests of this construct.
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Figure 7. High-Resolution Segmentation of ENCODE Data by Self-Organising Maps (SOM)
The training of the self-organising map (panel A) and analysis of the results (panels B and
C) are shown. Initially we arbitrarily placed genomic segments from the chromHMM
segmentation on to the toroidal map surface, although the SOM does not use the
chromHMM state assignments (panel A). We then trained the map using the signal of the 12
different ChIP-seq and DNase-seq assays in the six cell types analysed. Each unit of the
SOM is represented here by an hexagonal cell in a planar two-dimensional view of the
toroidal map. Curved arrows indicate that traversing the edges of two dimensional view
leads back to the opposite edge. The resulting map can be overlaid with any class of
ENCODE or other data to view the distribution of that data within this high-resolution
segmentation. In panel A the distributions of genome bases across the untrained and trained
map (left and right, respectively) are shown using heatmap colours for log10 values. Panel B
shows the distribution of TSSs from CAGE experiments of GENCODE annotation on the
planar representations of either the initial random organisation (left) or the final trained
SOM (right) using heat maps coloured according to the accompanying scales. The bottom
half of panel B expands the different distributions in the SOM for all expressed TSSs (left)
or TSSs specifically expressed in two example cell lines, H1 hESC (centre) and HepG2
(right). Panel C shows the association of Gene Ontology (GO) terms on the same
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representation of the same trained SOM. We assigned genes that are within 20 kb of a
genomic segment in a SOM unit to that unit, and then associated this set of genes with GO
terms using a hypergeometric distribution after correcting for multiple testing. Map units
that are significantly associated to GO terms are now coloured green, with increasing
strength of colour reflecting increasing numbers of genes significantly associated with the
GO terms for either immune response (left) or sequence-specific TF activity (centre). In
each case, specific SOM units show association with these terms. The right-hand panel
shows the distribution on the same SOM of all significantly associated GO terms, now
colouring by GO term count per SOM unit. For sequence-specific TF activity, two example
genomic regions are extracted at the bottom of panel C from neighbouring SOM units.
These are regions around the DBX1 (from SOM unit 26,31, left panel) and IRX6 (SOM unit
27,30, right panel) genes, respectively, along with their H3K27me3 ChIP-seq signal for each
of the Tier 1 and 2 cell types. For DBX1, representative of a set of primarily neuronal TFs
associated with unit 26,31, there is a repressive H3K27me3 signal in both H1 hESC and
HUVEC cells; for IRX6, representative of a set of body patterning TFs associated with SOM
unit 27,30, the repressive mark is restricted largely to the embryonic stem cell.
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Figure 8. Allele-Specific ENCODE Elements
Panel A shows representative allele-specific information from GM12878 cells for selected
assays around the first exon of the NACC2 gene (genomic region chr9:138,950,000-
138,995,000, GRCh37). Transcription signal is shown in green, and the three sections show
allele specific data for three datasets (POLR2A, H3K79me2 and H3K27me3 ChIP-seq). In
each case the purple signal is the processed signal for all sequence reads for the assay, while
the blue and red signals show sequence reads specifically assigned to either the paternal or
maternal copies of the genome, respectively. The set of common SNPs from dbSNP,
including the phased, heterozygous SNPs used to provide the assignment, are shown at the
bottom of the panel. NACC2 has a statistically significant paternal bias for POLR2A and the
transcription associated mark H3K79me2, and has a significant maternal bias for the
repressive mark H3K27me3. Panel B shows pairwise correlations of allele specific signal
within single genes (below the diagonal) or within individual ChromHMM segments across
the whole genome for selected DNase-seq and histone modification and TF ChIP-seq assays.
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The extent of correlation is coloured according to the heatmap scale indicated from positive
correlation (red) through to anti-correlation (blue).
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Figure 9. Examining ENCODE Elements on a per individual basis in the Normal and Cancer
Genome
Panel A shows the breakdown of variants in a single genome (NA12878) by both frequency
(common or rare (i.e., variants not present in the low-coverage sequencing of 179
individuals in the pilot 1 European panel of the 1000 Genomes project55) and by ENCODE
annotation, including protein-coding gene and non-coding elements (GENCODE
annotations for protein-coding genes, pseudogenes, and other ncRNAs, as well as TF-
binding sites from ChIP-seq datasets, excluding broad annotations such as histone
modifications, segmentations, and RNA-seq). Annotation status is further subdivided by
predicted functional effect, being non-synonymous and missense mutations for protein-
coding regions and variants overlapping bound TF motifs for non-coding element
annotations. A substantial proportion of variants are annotated as having predicted
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functional effects in the non-coding category. Panel B shows one of several relatively rare
occurrences, where alignment to an individual genome sequence (paternal and maternal
panels) shows a different readout from the reference genome. In this case, a paternal
haplotype-specific CTCF peak is identified. Panel C shows the relative level of somatic
variants from whole-genome melanoma sample that occur in DHSs unique to different cell
lines. The coloured bars show cases that are significantly enriched or supressed in somatic
mutations. Details of ENCODE cell types can be found at
http://encodeproject.org/ENCODE/cellTypes.html.

Page 39

Nature. Author manuscript; available in PMC 2013 March 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://encodeproject.org/ENCODE/cellTypes.html


Figure 10. Comparison of Genome-wide Association Study-identified Loci with ENCODE Data
Panel A shows overlap of lead SNPs in the NHGRI GWAS SNP catalog (June 2011) with
DHSs (left) or TF-binding sites (right) as red bars compared to various control SNP sets in
blue. The control SNP sets are: SNPs on the Illumina 2.5M chip as an example of a widely
used GWAS SNP typing panel; SNPs from the 1,000 Genomes project; SNPs extracted from
24 personal genomes (see Personal Genome Variants track at
http://main.genome-browser.bx.psu.edu80 all shown as blue bars. In addition a further
control utilised 1,000 randomisations from the genotyping SNP panel, matching the SNPs
with each NHGRI catalog SNP for allele frequency and distance to the nearest TSS (light
blue bars with bounds at 1.5 times the interquartile range, and any outliers beyond shown as
circles). For both DHSs and TF binding regions, a larger proportion of overlaps with
GWAS-implicated SNPs is found compared to any of the controls sets. Panel B shows the
aggregate overlap of phenotypes to selected TF-binding sites (left matrix) or DHSs in
selected cell lines (right matrix), with a count of overlaps between the phenotype and the
cell line/factor. Values in green squares pass an empirical p-value threshold <=0.01 (based
on the same analysis of overlaps between randomly chosen, GWAS-matched SNPs and
these epigenetic features) and have at least a count of 3 overlaps. The p-value for the total
number of phenotype-TF associations is <0.001. Panel C shows several SNPs associated
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with Crohn’s disease and other inflammatory diseases that reside in a large gene desert on
chromosome 5, along with some epigenetic features suggestive of function. The SNP
(rs11742570) strongly associated to Crohn’s disease overlaps a GATA2 TF binding signal
determined in HUVEC cells. This region is also DNaseI hypersensitive in HUVEC and T-
helper Th1 and Th2 cells.
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Table 1

Summary of TF classes analysed in ENCODE.

Acronym Description Factors Analysed

ChromRem ATP-dependent chromatin complexes 5

DNARep DNA repair 3

HISase Histone acetylation, deacetylation, or methylation complexes 8

Other Cyclin kinase associated with transcription. 1

Pol2 Pol II subunit 1 (2 forms)

Pol3 Pol III-associated 6

TFNS General Pol II-associated factor, not site-specific 8

TFSS Pol II TF with sequence-specific DNA binding 87
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Table 2

Summary of histone modifications and variants studied in ENCODE, their peak characteristics, and putative
functions.

Histone modification
or variant

Signal characteristics Putative functions

H2A.Z Peak Histone protein variant (H2A.Z) associated with regulatory elements with dynamic
chromatin

H3K4me1 Peak/Region Mark of regulatory elements associated with enhancers and other distal elements, but also
enriched downstream of transcription starts

H3K4me2 Peak Mark of regulatory elements associated with promoters and enhancers

H3K4me3 Peak Mark of regulatory elements primarily associated with promoters/transcription starts

H3K9ac Peak Mark of active regulatory elements with preference for promoters

H3K9me1 Region Preference for 5′ end of genes

H3K9me3 Peak/Region Repressive mark associated with constitutive heterochromatin, and repetitive elements

H3K27ac Peak Mark of active regulatory elements; may distinguish active enhancers and promoters from
their inactive counterparts

H3K27me3 Region Repressive mark established by polycomb complex activity associated with repressive
domains and silent developmental genes

H3K36me3 Region Elongation mark associated with transcribed portions of genes, with preference for 3′
regions after intron 1

H3K79me2 Region Transcription-associated mark, with preference for 5′ end of genes

H4K20me1 Region Preference for 5′ end of genes
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