16 research outputs found

    Series study of the One-dimensional S-T Spin-Orbital Model

    Full text link
    We use perturbative series expansions about a staggered dimerized ground state to compute the ground state energy, triplet excitation spectra and spectral weight for a one-dimensional model in which each site has an S=\case 1/2 spin Si{\bf S}_i and a pseudospin Ti{\bf T}_i, representing a doubly degenerate orbital. An explicit dimerization is introduced to allow study of the confinement of spinon excitations. The elementary triplet represents a bound state of two spinons, and is stable over much of the Brillouine zone. A special line is found in the gapped spin-liquid phase, on which the triplet excitation is dispersionless. The formation of triplet bound states is also investigated.Comment: 9 pages, 9 figure

    Loop Corrections to Cosmological Perturbations in Multi-field Inflationary Models

    Full text link
    We investigate one-loop quantum corrections to the power spectrum of adiabatic perturbation from entropy modes/adiabatic mode cross-interactions in multiple DBI inflationary models. We find that due to the non-canonical kinetic term in DBI models, the loop corrections are enhanced by slow-varying parameter ϵ\epsilon and small sound speed csc_s. Thus, in general the loop-corrections in multi-DBI models can be large. Moreover, we find that the loop-corrections from adiabatic/entropy cross-interaction vertices are IR finite.Comment: 21 pages, 7 figures; v2, typos corrected, ref added; v3 typos corrected, version for publishing in jca

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Assessment of Lung Cancer Risk on the Basis of a Biomarker Panel of Circulating Proteins

    No full text
    Importance: There is an urgent need to improve lung cancer risk assessment because current screening criteria miss a large proportion of cases. Objective: To investigate whether a lung cancer risk prediction model based on a panel of selected circulating protein biomarkers can outperform a traditional risk prediction model and current US screening criteria. Design, Setting, and Participants: Prediagnostic samples from 108 ever-smoking patients with lung cancer diagnosed within 1 year after blood collection and samples from 216 smoking-matched controls from the Carotene and Retinol Efficacy Trial (CARET) cohort were used to develop a biomarker risk score based on 4 proteins (cancer antigen 125 [CA125], carcinoembryonic antigen [CEA], cytokeratin-19 fragment [CYFRA 21-1], and the precursor form of surfactant protein B [Pro-SFTPB]). The biomarker score was subsequently validated blindly using absolute risk estimates among 63 ever-smoking patients with lung cancer diagnosed within 1 year after blood collection and 90 matched controls from 2 large European population-based cohorts, the European Prospective Investigation into Cancer and Nutrition (EPIC) and the Northern Sweden Health and Disease Study (NSHDS). Main Outcomes and Measures: Model validity in discriminating between future lung cancer cases and controls. Discrimination estimates were weighted to reflect the background populations of EPIC and NSHDS validation studies (area under the receiver-operating characteristics curve [AUC], sensitivity, and specificity). Results: In the validation study of 63 ever-smoking patients with lung cancer and 90 matched controls (mean [SD] age, 57.7 [8.7] years; 68.6% men) from EPIC and NSHDS, an integrated risk prediction model that combined smoking exposure with the biomarker score yielded an AUC of 0.83 (95% CI, 0.76-0.90) compared with 0.73 (95% CI, 0.64-0.82) for a model based on smoking exposure alone (P =.003 for difference in AUC). At an overall specificity of 0.83, based on the US Preventive Services Task Force screening criteria, the sensitivity of the integrated risk prediction (biomarker) model was 0.63 compared with 0.43 for the smoking model. Conversely, at an overall sensitivity of 0.42, based on the US Preventive Services Task Force screening criteria, the integrated risk prediction model yielded a specificity of 0.95 compared with 0.86 for the smoking model. Conclusions and Relevance: This study provided a proof of principle in showing that a panel of circulating protein biomarkers may improve lung cancer risk assessment and may be used to define eligibility for computed tomography screening.. © 2018 American Medical Association. All rights reserved

    Teachers and children’s loneliness: A review of the literature and educational implications

    No full text

    A meta-analysis of Hodgkin lymphoma reveals 19p13.3 <i>TCF3</i> as a novel susceptibility locus

    Get PDF
    Recent genome-wide association studies (GWAS) of Hodgkin lymphoma (HL) have identified associations with genetic variation at both HLA and non-HLA loci; however, much of heritable HL susceptibility remains unexplained. Here we perform a meta-analysis of three HL GWAS totaling 1,816 cases and 7,877 controls followed by replication in an independent set of 1,281 cases and 3,218 controls to find novel risk loci. We identify a novel variant at 19p13.3 associated with HL (rs1860661; odds ratio (OR)=0.81, 95% confidence interval (95% CI)=0.76–0.86, &lt;i&gt;P&lt;/i&gt;&lt;sub&gt;combined&lt;/sub&gt;=3.5 × 10&lt;sup&gt;−10&lt;/sup&gt;), located in intron 2 of &lt;i&gt;TCF3&lt;/i&gt; (also known as &lt;i&gt;E2A&lt;/i&gt;), a regulator of B- and T-cell lineage commitment known to be involved in HL pathogenesis. This meta-analysis also notes associations between previously published loci at 2p16, 5q31, 6p31, 8q24 and 10p14 and HL subtypes. We conclude that our data suggest a link between the 19p13.3 locus, including &lt;i&gt;TCF3&lt;/i&gt;, and HL risk
    corecore