49 research outputs found

    Differential transcriptomic responses to heat stress in surface and subterranean diving beetles

    Get PDF
    Subterranean habitats are generally very stable environments, and as such evolutionary transitions of organisms from surface to subterranean lifestyles may cause considerable shifts in physiology, particularly with respect to thermal tolerance. In this study we compared responses to heat shock at the molecular level in a geographically widespread, surface-dwelling water beetle to a congeneric subterranean species restricted to a single aquifer (Dytiscidae: Hydroporinae). The obligate subterranean beetle Paroster macrosturtensis is known to have a lower thermal tolerance compared to surface lineages (CTmax 38 °C cf. 42–46 °C), but the genetic basis of this physiological diference has not been characterized. We experimentally manipulated the thermal environment of 24 individuals to demonstrate that both species can mount a heat shock response at high temperatures (35 °C), as determined by comparative transcriptomics. However, genes involved in these responses difer between species and a far greater number were diferentially expressed in the surface taxon, suggesting it can mount a more robust heat shock response; these data may underpin its higher thermal tolerance compared to subterranean relatives. In contrast, the subterranean species examined not only diferentially expressed fewer genes in response to increasing temperatures, but also in the presence of the experimental setup employed here alone. Our results suggest P. macrosturtensis may be comparatively poorly equipped to respond to both thermally induced stress and environmental disturbances more broadly. The molecular fndings presented here have conservation implications for P. macrosturtensis and contribute to a growing narrative concerning weakened thermal tolerances in obligate subterranean organisms at the molecular level.Perry G. Beasley-Hall, Terry Bertozzi, Tessa M. Bradford, Charles S. P. Foster, Karl Jones, Simon M.Tierney, William F. Humphreys, Andrew D.Austin, Steven J. B. Coope

    A Study of Memetic Search with Multi-parent Combination for UBQP

    Get PDF
    We present a multi-parent hybrid genetic–tabu algorithm (denoted by GTA) for the Unconstrained Binary Quadratic Programming (UBQP) problem, by incorporating tabu search into the framework of genetic algorithm. In this paper, we propose a new multi-parent combination operator for generating offspring solutions. A pool updating strategy based on a quality-and-distance criterion is used to manage the population. Experimental comparisons with leading methods for the UBQP problem on 25 large public instances demonstrate the efficacy of our proposed algorithm in terms of both solution quality and computational efficiency

    Cycling of transuranic radionuclides in the Columbia River, its Estuary, and the Northeast Pacific Ocean. Progress report, February 1981-December 1981

    No full text
    Progress from February, 1981 through December, 1981 in research dealing with the behavior of transuranic and other radionuclides in the Columbia River downstream from the Hanford Reservation is summarized. All of the objectives outlined in last year's renewal proposal except one were met. The analyses of all cores raised from the Columbia River between McNary Reservoir and the mouth of the river were completed. This permits the establishment of a budget for Pu and Am. Analyses of four natural matrix standard reference materials for the National Bureau of Standards were also performed

    Parallel and convergent genomic changes underlie independent subterranean colonization across beetles

    Get PDF
    Adaptation to life in caves is often accompanied by dramatically convergent changes across distantly related taxa, epitomized by the loss or reduction of eyes and pigmentation. Nevertheless, the genomic underpinnings underlying cave-related phenotypes are largely unexplored from a macroevolutionary perspective. Here we investigate genome-wide gene evolutionary dynamics in three distantly related beetle tribes with at least six instances of independent colonization of subterranean habitats, inhabiting both aquatic and terrestrial underground systems. Our results indicate that remarkable gene repertoire changes mainly driven by gene family expansions occurred prior to underground colonization in the three tribes, suggesting that genomic exaptation may have facilitated a strict subterranean lifestyle parallelly across beetle lineages. The three tribes experienced both parallel and convergent changes in the evolutionary dynamics of their gene repertoires. These findings pave the way towards a deeper understanding of the evolution of the genomic toolkit in hypogean fauna.Pau Balart-García, Leandro Aristide, Tessa M. Bradford, Perry G. Beasley-Hall, Slavko Polak, Steven J. B. Cooper, Rosa Fernánde
    corecore