561 research outputs found

    The effects of spatial resolution and dimensionality on modeling regional-scale hydraulics in a multichannel river

    Get PDF
    As modeling capabilities at regional and global scales improve, questions remain regarding the appropriate process representation required to accurately simulate multichannel river hydraulics. This study uses the hydrodynamic model LISFLOOD-FP to simulate patterns of water surface elevation (WSE), depth, and inundation extent across a ∌90 km, anabranching reach of the Tanana River, Alaska. To provide boundary conditions, we collected field observations of bathymetry and WSE during a 2 week field campaign in summer 2013. For the first time at this scale, we test a simple, raster-based model's capabilities to simulate 2-D, in-channel patterns of WSE and inundation extent. Additionally, we compare finer resolution (≀25 m) 2-D models to four other models of lower dimensionality and coarser resolution (100–500 m) to determine the effects of simplifying process representation. Results indicate that simple, raster-based models can accurately simulate 2-D, in-channel hydraulics in the Tanana. Also, the fine-resolution, 2-D models produce lower errors in spatiotemporal outputs of WSE and inundation extent compared to coarse-resolution, 1-D models: 22.6 cm versus 56.4 cm RMSE for WSE, and 90% versus 41% Critical Success Index values for simulating inundation extent. Incorporating the anabranching channel network using subgrid representations for smaller channels is important for simulating accurate hydraulics and lowers RMSE in spatially distributed WSE by at least 16%. As a result, better representation of the converging and diverging multichannel network by using subgrid solvers or downscaling techniques in multichannel rivers is needed to improve errors in regional to global-scale models

    On walls of marginal stability in N=2 string theories

    Full text link
    We study the properties of walls of marginal stability for BPS decays in a class of N=2 theories. These theories arise in N=2 string compactifications obtained as freely acting orbifolds of N=4 theories, such theories include the STU model and the FHSV model. The cross sections of these walls for a generic decay in the axion-dilaton plane reduce to lines or circles. From the continuity properties of walls of marginal stability we show that central charges of BPS states do not vanish in the interior of the moduli space. Given a charge vector of a BPS state corresponding to a large black hole in these theories, we show that all walls of marginal stability intersect at the same point in the lower half of the axion-dilaton plane. We isolate a class of decays whose walls of marginal stability always lie in a region bounded by walls formed by decays to small black holes. This enables us to isolate a region in moduli space for which no decays occur within this class. We then study entropy enigma decays for such models and show that for generic values of the moduli, that is when moduli are of order one compared to the charges, entropy enigma decays do not occur in these models.Comment: 40 pages, 2 figure

    MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset

    Get PDF
    High-resolution raster hydrography maps are a fundamental data source for many geoscience applications. Here we introduce MERIT Hydro, a new global flow direction map at 3-arc sec resolution (~90 m at the equator) derived from the latest elevation data (MERIT DEM) and water body data sets (G1WBM, Global Surface Water Occurrence, and OpenStreetMap). We developed a new algorithm to extract river networks near automatically by separating actual inland basins from dummy depressions caused by the errors in input elevation data. After a minimum amount of hand editing, the constructed hydrography map shows good agreement with existing quality-controlled river network data sets in terms of flow accumulation area and river basin shape. The location of river streamlines was realistically aligned with existing satellite-based global river channel data. Relative error in the drainage area was <0.05 for 90% of Global Runoff Data Center (GRDC) gauges, confirming the accuracy of the delineated global river networks. Discrepancies in flow accumulation area were found mostly in arid river basins containing depressions that are occasionally connected at high water levels and thus resulting in uncertain watershed boundaries. MERIT Hydro improves on existing global hydrography data sets in terms of spatial coverage (between N90 and S60) and representation of small streams, mainly due to increased availability of high-quality baseline geospatial data sets. The new flow direction and flow accumulation maps, along with accompanying supplementary layers on hydrologically adjusted elevation and channel width, will advance geoscience studies related to river hydrology at both global and local scales

    AirSWOT measurements of river water surface elevation and slope: Tanana River, AK

    Get PDF
    Fluctuations in water surface elevation (WSE) along rivers have important implications for water resources, flood hazards, and biogeochemical cycling. However, current in situ and remote sensing methods exhibit key limitations in characterizing spatiotemporal hydraulics of many of the world's river systems. Here we analyze new measurements of river WSE and slope from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission aimed at addressing limitations in current remotely sensed observations of surface water. To evaluate its capabilities, we compare AirSWOT WSEs and slopes to in situ measurements along the Tanana River, Alaska. Root-mean-square error is 9.0 cm for WSEs averaged over 1 km2 areas and 1.0 cm/km for slopes along 10 km reaches. Results indicate that AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics. AirSWOT's high-precision measurements are valuable for hydrologic analysis, flood modeling studies, and for validating future SWOT measurements

    Preschool Children and Behaviour Problems: A Prospective Study

    Get PDF
    Toddler/child behaviour problems have received relatively little previous attention. Prior studies have implicated a wide variety of factors in the aetiology of child behaviour problems but many of these factors are correlated and little is known about their independent contributions. Four broad categories of factors have been associated with child behaviour problems: (1) maternal social and economic characteristics; (2) maternal lifestyle; (3) maternal mental state/child-rearing practices; and (4) maternal and child physical health. The study took a sample of 5296 families from the Mater-University of Queensland Study of Pregnancy (MUSP) for whom 5-year prospective data are available. The major predictors of toddler behaviour problems were the mother's and child's health, and the mother's mental state. The mother's sociostructural characteristics and lifestyle made little or no additional contribution to the prediction models. It is, however, salutary to note that the majority of children who are classified as having high levels of troublesome behaviour do not fall into any of the risk categories. A variety of explanations and interpretations of the data is considered

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Measurement of the CP-violating phase \phi s in Bs->J/\psi\pi+\pi- decays

    Get PDF
    Measurement of the mixing-induced CP-violating phase phi_s in Bs decays is of prime importance in probing new physics. Here 7421 +/- 105 signal events from the dominantly CP-odd final state J/\psi pi+ pi- are selected in 1/fb of pp collision data collected at sqrt{s} = 7 TeV with the LHCb detector. A time-dependent fit to the data yields a value of phi_s=-0.019^{+0.173+0.004}_{-0.174-0.003} rad, consistent with the Standard Model expectation. No evidence of direct CP violation is found.Comment: 15 pages, 10 figures; minor revisions on May 23, 201

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1 of pp collision data collected by the LHCb experiment at a centre-of-mass energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the first uncertainty is statistical, the second is the experimental systematic uncertainty and the third is associated with the ratio of fragmentation fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x 10^{-5}. The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/- 0.9(syst.))%. Both measurements are the most precise to date and are in agreement with the previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table
    • 

    corecore