43 research outputs found

    The Light-Cone Wave Function of the Pion

    Get PDF
    The light-cone wave function of the pion is calculated within the Nambu-Jona-Lasinio model. The result is used to derive the pion electromagnetic form factor, charge radius, structure function, pi-gamma transition form factor and distribution amplitude.Comment: 6 pages, 1 figure, elsart.sty; talk given at 10th International Light-Cone Meeting on Nonperturbative QCD and Hadron Phenomenology, Heidelberg, Germany, June 200

    Evidence for the prepattern/cooption model of vertebrate jaw evolution

    Get PDF
    The appearance of jaws was a turning point in vertebrate evolution because it allowed primitive vertebrates to capture and process large, motile prey. The vertebrate jaw consists of separate dorsal and ventral skeletal elements connected by a joint. How this structure evolved from the unjointed gill bar of a jawless ancestor is an unresolved question in vertebrate evolution. To understand the developmental bases of this evolutionary transition, we examined the expression of 12 genes involved in vertebrate pharyngeal patterning in the modern jawless fish lamprey. We find nested expression of Dlx genes, as well as combinatorial expression of Msx, Hand and Gsc genes along the dorso-ventral (DV) axis of the lamprey pharynx, indicating gnathostome-type pharyngeal patterning evolved before the appearance of the jaw. In addition, we find that Bapx and Gdf5/6/7, key regulators of joint formation in gnathostomes, are not expressed in the lamprey first arch, whereas Barx, which is absent from the intermediate first arch in gnathostomes, marks this domain in lamprey. Taken together, these data support a new scenario for jaw evolution in which incorporation of Bapx and Gdf5/6/7 into a preexisting DV patterning program drove the evolution of the jaw by altering the identity of intermediate first-arch chondrocytes. We present this “Pre-pattern/Cooption” model as an alternative to current models linking the evolution of the jaw to the de novo appearance of sophisticated pharyngeal DV patterning

    Dyson-Schwinger Equations - aspects of the pion

    Get PDF
    The contemporary use of Dyson-Schwinger equations in hadronic physics is exemplified via applications to the calculation of pseudoscalar meson masses, and inclusive deep inelastic scattering with a determination of the pion's valence-quark distribution function.Comment: 4 pages. Contribution to the Proceedings of ``DPF 2000,'' the Meeting of the Division of Particles and Fields of the American Physical Society, August 9-12, 2000, Department of Physics, the Ohio State University, Columbus, Ohi

    Pion Structure Function in the Nambu and Jona-Lasinio model

    Full text link
    The pion structure function is studied in the Nambu and Jona-Lasinio (NJL) model. We calculate the forward scattering amplitude of a virtual photon from a pion target in the Bjorken limit, and obtain valence quark distributions of the pion at the low energy hadronic scale, where the NJL model is supposed to work. The calculated distribution functions are evolved to the experimental momentum scale using the Altarelli-Parisi equation. The resulting distributions are in a reasonable agreement with experiment. We calculate also the kaon structure function and compare the ratio of kaon to pion valence u-quark distributions with experiment.Comment: 15 pages with 5 figures as uuencoded postscript files, TMU-NT-930301 (plain LaTeX

    Pion and Rho Structure Functions from Lattice QCD

    Get PDF
    We calculate the lower moments of the deep-inelastic structure functions of the pion and the rho meson on the lattice. Of particular interest to us are the spin-dependent structure functions of the rho. The calculations are done with Wilson fermions and for three values of the quark mass, so that we can perform an extrapolation to the chiral limit.Comment: 30pp, LaTeX2e with 15 eps figures using epsfig. Postscript file also available from ftp://ftp.th.physik.uni-frankfurt.de/pub/cbest/pionrho.ps or http://www.th.physik.uni-frankfurt.de/~cbest/pionrho.p

    Nucleon Structure Functions at Moderate Q**2: Relativistic Constituent Quarks and Spectator Mass Spectrum

    Get PDF
    We present a model description of the nucleon valence structure function applicable over the entire region of the Bjorken variable x, and above moderate values of Q**2 (> 1 GeV**2). We stress the importance of describing the complete spectrum of intermediate states which are spectator to the deep-inelastic collision. At a scale of 1 GeV**2 the relevant degrees of freedom are constituent quarks and pions. The large-x region is then described in terms of scattering from constituent quarks in the nucleon, while the dressing of constituent quarks by pions plays an important role at intermediate x values. The correct small-x behavior, which is necessary for the proper normalization of the valence distributions, is guaranteed by modeling the asymptotic spectator mass spectrum according to Regge phenomenology.Comment: 44 pages RevTeX, 9 uuencoded figures, accepted for publication in Nucl. Phys.

    Meson Cloud of the Nucleon in Polarized Semi-Inclusive Deep-Inelastic Scattering

    Get PDF
    We investigate the possibility of identifying an explicit pionic component of the nucleon through measurements of polarized Δ++\Delta^{++} baryon fragments produced in deep-inelastic leptoproduction off polarized protons, which may help to identify the physical mechanism responsible for the breaking of the Gottfried sum rule. The pion-exchange model predicts highly correlated polarizations of the Δ++\Delta^{++} and target proton, in marked contrast with the competing diquark fragmentation process. Measurement of asymmetries in polarized Λ\Lambda production may also reveal the presence of a kaon cloud in the nucleon.Comment: 23 pages REVTeX, 7 uuencoded figures, accepted for publication in Zeit. Phys.

    Valence-quark distributions in the pion

    Get PDF
    We calculate the pion's valence-quark momentum-fraction probability distribution using a Dyson-Schwinger equation model. Valence-quarks with an active mass of 0.30 GeV carry 71% of the pion's momentum at a resolving scale q_0=0.54 GeV = 1/(0.37 fm). The shape of the calculated distribution is characteristic of a strongly bound system and, evolved from q_0 to q=2 GeV, it yields first, second and third moments in agreement with lattice and phenomenological estimates, and valence-quarks carrying 49% of the pion's momentum. However, pointwise there is a discrepancy between our calculated distribution and that hitherto inferred from parametrisations of extant pion-nucleon Drell-Yan data.Comment: 8 pages, 3 figures, REVTEX, aps.sty, epsfig.sty, minor corrections, version to appear in PR

    Exploring the Partonic Structure of Hadrons through the Drell-Yan Process

    Full text link
    The Drell-Yan process is a standard tool for probing the partonic structure of hadrons. Since the process proceeds through a quark-antiquark annihilation, Drell-Yan scattering possesses a unique ability to selectively probe sea distributions. This review examines the application of Drell-Yan scattering to elucidating the flavor asymmetry of the nucleon's sea and nuclear modifications to the sea quark distributions in unpolarized scattering. Polarized beams and targets add an exciting new dimension to Drell-Yan scattering. In particular, the two initial-state hadrons give Drell-Yan sensitivity to chirally-odd transversity distributions.Comment: 23 pages, 9 figures, to appear in J. Phys. G, resubmission corrects typographical error

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore