630 research outputs found

    Multipeakons and a theorem of Stieltjes

    Full text link
    A closed form of the multi-peakon solutions of the Camassa-Holm equation is found using a theorem of Stieltjes on continued fractions. An explicit formula is obtained for the scattering shifts.Comment: 6 page

    An Algorithmic Argument for Nonadaptive Query Complexity Lower Bounds on Advised Quantum Computation

    Full text link
    This paper employs a powerful argument, called an algorithmic argument, to prove lower bounds of the quantum query complexity of a multiple-block ordered search problem in which, given a block number i, we are to find a location of a target keyword in an ordered list of the i-th block. Apart from much studied polynomial and adversary methods for quantum query complexity lower bounds, our argument shows that the multiple-block ordered search needs a large number of nonadaptive oracle queries on a black-box model of quantum computation that is also supplemented with advice. Our argument is also applied to the notions of computational complexity theory: quantum truth-table reducibility and quantum truth-table autoreducibility.Comment: 16 pages. An extended abstract will appear in the Proceedings of the 29th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Springer-Verlag, Prague, August 22-27, 200

    The inverse spectral problem for the discrete cubic string

    Full text link
    Given a measure mm on the real line or a finite interval, the "cubic string" is the third order ODE −ϕ′′′=zmϕ-\phi'''=zm\phi where zz is a spectral parameter. If equipped with Dirichlet-like boundary conditions this is a nonselfadjoint boundary value problem which has recently been shown to have a connection to the Degasperis-Procesi nonlinear water wave equation. In this paper we study the spectral and inverse spectral problem for the case of Neumann-like boundary conditions which appear in a high-frequency limit of the Degasperis--Procesi equation. We solve the spectral and inverse spectral problem for the case of mm being a finite positive discrete measure. In particular, explicit determinantal formulas for the measure mm are given. These formulas generalize Stieltjes' formulas used by Krein in his study of the corresponding second order ODE −ϕ′′=zmϕ-\phi''=zm\phi.Comment: 24 pages. LaTeX + iopart, xypic, amsthm. To appear in Inverse Problems (http://www.iop.org/EJ/journal/IP

    Hormander class of pseudo-differential operators on compact Lie groups and global hypoellipticity

    Get PDF
    In this paper we give several global characterisations of the Hormander class of pseudo-differential operators on compact Lie groups. The result is applied to give criteria for the ellipticity and the global hypoellipticity of pseudo-differential operators in terms of their matrix-valued full symbols. Several examples of the first and second order globally hypoelliptic differential operators are given. Where the global hypoelliptiticy fails, one can construct explicit examples based on the analysis of the global symbols.Comment: 20 page

    On the Cauchy problem for a nonlinearly dispersive wave equation

    Full text link
    We establish the local well-posedness for a new nonlinearly dispersive wave equation and we show that the equation has solutions that exist for indefinite times as well as solutions which blowup in finite times. Furthermore, we derive an explosion criterion for the equation and we give a sharp estimate from below for the existence time of solutions with smooth initial data.Comment: arxiv version is already officia

    Scalability of quantum computation with addressable optical lattices

    Get PDF
    We make a detailed analysis of error mechanisms, gate fidelity, and scalability of proposals for quantum computation with neutral atoms in addressable (large lattice constant) optical lattices. We have identified possible limits to the size of quantum computations, arising in 3D optical lattices from current limitations on the ability to perform single qubit gates in parallel and in 2D lattices from constraints on laser power. Our results suggest that 3D arrays as large as 100 x 100 x 100 sites (i.e., ∼106\sim 10^6 qubits) may be achievable, provided two-qubit gates can be performed with sufficiently high precision and degree of parallelizability. Parallelizability of long range interaction-based two-qubit gates is qualitatively compared to that of collisional gates. Different methods of performing single qubit gates are compared, and a lower bound of 1×10−51 \times 10^{-5} is determined on the error rate for the error mechanisms affecting 133^{133}Cs in a blue-detuned lattice with Raman transition-based single qubit gates, given reasonable limits on experimental parameters.Comment: 17 pages, 5 figures. Accepted for publication in Physical Review

    Decay and Continuity of Boltzmann Equation in Bounded Domains

    Full text link
    Boundaries occur naturally in kinetic equations and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: inflow, bounce-back reflection, specular reflection, and diffuse reflection. We establish exponential decay in L∞L^{\infty} norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set of the velocity at the boundary. Our contribution is based on a new L2L^{2} decay theory and its interplay with delicate % L^{\infty} decay analysis for the linearized Boltzmann equation, in the presence of many repeated interactions with the boundary.Comment: 89 pages

    Neumark Operators and Sharp Reconstructions, the finite dimensional case

    Get PDF
    A commutative POV measure FF with real spectrum is characterized by the existence of a PV measure EE (the sharp reconstruction of FF) with real spectrum such that FF can be interpreted as a randomization of EE. This paper focuses on the relationships between this characterization of commutative POV measures and Neumark's extension theorem. In particular, we show that in the finite dimensional case there exists a relation between the Neumark operator corresponding to the extension of FF and the sharp reconstruction of FF. The relevance of this result to the theory of non-ideal quantum measurement and to the definition of unsharpness is analyzed.Comment: 37 page
    • …
    corecore