We make a detailed analysis of error mechanisms, gate fidelity, and
scalability of proposals for quantum computation with neutral atoms in
addressable (large lattice constant) optical lattices. We have identified
possible limits to the size of quantum computations, arising in 3D optical
lattices from current limitations on the ability to perform single qubit gates
in parallel and in 2D lattices from constraints on laser power. Our results
suggest that 3D arrays as large as 100 x 100 x 100 sites (i.e., ∼106
qubits) may be achievable, provided two-qubit gates can be performed with
sufficiently high precision and degree of parallelizability. Parallelizability
of long range interaction-based two-qubit gates is qualitatively compared to
that of collisional gates. Different methods of performing single qubit gates
are compared, and a lower bound of 1×10−5 is determined on the
error rate for the error mechanisms affecting 133Cs in a blue-detuned
lattice with Raman transition-based single qubit gates, given reasonable limits
on experimental parameters.Comment: 17 pages, 5 figures. Accepted for publication in Physical Review