This paper employs a powerful argument, called an algorithmic argument, to
prove lower bounds of the quantum query complexity of a multiple-block ordered
search problem in which, given a block number i, we are to find a location of a
target keyword in an ordered list of the i-th block. Apart from much studied
polynomial and adversary methods for quantum query complexity lower bounds, our
argument shows that the multiple-block ordered search needs a large number of
nonadaptive oracle queries on a black-box model of quantum computation that is
also supplemented with advice. Our argument is also applied to the notions of
computational complexity theory: quantum truth-table reducibility and quantum
truth-table autoreducibility.Comment: 16 pages. An extended abstract will appear in the Proceedings of the
29th International Symposium on Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science, Springer-Verlag, Prague, August 22-27,
200