Abstract

Given a measure mm on the real line or a finite interval, the "cubic string" is the third order ODE ϕ=zmϕ-\phi'''=zm\phi where zz is a spectral parameter. If equipped with Dirichlet-like boundary conditions this is a nonselfadjoint boundary value problem which has recently been shown to have a connection to the Degasperis-Procesi nonlinear water wave equation. In this paper we study the spectral and inverse spectral problem for the case of Neumann-like boundary conditions which appear in a high-frequency limit of the Degasperis--Procesi equation. We solve the spectral and inverse spectral problem for the case of mm being a finite positive discrete measure. In particular, explicit determinantal formulas for the measure mm are given. These formulas generalize Stieltjes' formulas used by Krein in his study of the corresponding second order ODE ϕ=zmϕ-\phi''=zm\phi.Comment: 24 pages. LaTeX + iopart, xypic, amsthm. To appear in Inverse Problems (http://www.iop.org/EJ/journal/IP

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 13/02/2019