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A commutative positive operator valued �POV� measure F with real spectrum is
characterized by the existence of a projection valued measure E �the sharp recon-
struction of F� with real spectrum such that F can be interpreted as a randomization
of E. This paper focuses on the relationships between this characterization of com-
mutative POV measures and Neumark’s extension theorem. In particular, we show
that in the finite dimensional case there exists a relation between the Neumark
operator corresponding to the extension of F and the sharp reconstruction of F. The
relevance of this result to the theory of nonideal quantum measurement and to the
definition of unsharpness is analyzed. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2437653�

I. INTRODUCTION

A positive operator valued measure �POV measure� is a map F from the Borel �-algebra of
the reals B�R� into the set of bounded, positive, self-adjoint operators F�H� in a Hilbert space H.
POV measures were introduced in quantum mechanics by Davis,1 Ludwig,2 and Holevo3–5 in
order to generalize the concept of observable of a physical system. Before the introduction of POV
measures, the observables were described by projection valued measures �PV measures�. In the
new terminology, we distinguish between sharp observables, which are described by PV measures,
and unsharp observables, which are described by POV measures.

Although the introduction of POV measures comes from the foundational analysis of quantum
mechanics, POV measures find several applications, for example, in quantum stochastic processes,
quantum optics,6,7 and relativistic quantum mechanics.8 A way to justify their use is to consider the
process of repeated measurements of a quantum observable9 or to derive them as a consequence of
the probabilistic structure of quantum mechanics.3–5,10

The state of a physical system can be represented by a density operator � acting in H.
Holevo3–5 has shown that there exists a one-to-one correspondence between POV measures and
affine maps from the set of states of a physical system into the set of probability measures on
B�R�. The affine map ����·�

F ��� corresponding to the POV measure F is determined by the
relation

����
F ��� = Tr��F���� for all � � B�R� . �1�

This allows one to interpret the real number ����
F ���=Tr��F���� as the probability that the out-

comes of the measurement of an unsharp observable1–3,9,10 F is in � when the physical system
under consideration is in the state �. Equation �1� generalizes the analogous equation
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����
E ��� = Tr��E���� ,

which has the same meaning for a sharp observable1–3,9,10 E :B�R�→E�H�, from B�R� to the set
of projection operators E�H�. Therefore, the unsharp observables, represented by POV measures,
generalize the sharp ones, represented by PV measures.

Several characterizations of POV measures11–17 can be found in the literature.
This paper focuses on the problem of finding a relation between two of them. The first

characterization is due to Neumark11 and establishes that every POV measure F :B�R�→F�H� can
be extended to a PV measure E+ :B�R�→F�H+� in an extended Hilbert space H+ in such a way
that F is the projection of E+ on H �see Theorem 3�. Neumark’s theorem brings to a physical
interpretation3,4 the measurement of nonorthogonal POV measures �see Corollary 1�.

The second characterization can be found in Refs. 15–18 and concerns commutative POV
measures. In Ref. 17 �see Theorem 2�, it is shown that for each commutative POV measure F there
exists a self-adjoint operator A with spectrum ��A�, named the sharp reconstruction of F, such that
for every ����A�, there is a probability measure ��·�

A ��� :B�R�→ �0,1� such that

F��� =� ����
A ���dE�

A = ��
A�A�, � � B�R� , �2�

where EA is the PV measure corresponding to A and the rules of the functional calculus have been
used �see Sec. II and Ref. 19�. The sharp reconstruction A is unique up to bijections. This
characterization allows16,17 one to interpret a commutative POV measure F as a randomization of
its sharp reconstruction A �see Theorem 2 and comments to the theorem�.

In the present paper, we restrict ourselves, without loss of generality, to the case of POV
measures with spectrum in �0, 1� �see Sec. III and Appendix A�. Let F be a commutative POV
measure, A=��dE�

A its sharp reconstruction, E+ a Neumark extension of F, and A+=��dE�
+ the

corresponding operator. We show �Theorem 4� that for any bounded, measurable function
f : �0,1�→R, there exists a bounded, measurable function Gf : �0,1�→ �0,1� such that

P+f�A+��H = Gf�A� ,

where P+ is the operator of projection onto H, Gf�A�=�Gf���dE�
A, f�A+�=�f���dE�

+, and f�A+��H
is the restriction of f�A+� to H.

Moreover, we prove �Theorem 7� that, in the finite dimensional case, there exists a bounded,
one-to-one function f such that Gf is one to one �this is shown to be true for POV measures both
with finite and countably infinite outcome sets�. This gives a notion of equivalence between sharp
reconstructions and projections of Neumark operators which generalizes the one proposed in Ref.
18. We denote this equivalence by A↔Pr A+ �see Definition 9�. This result suggests that it is
reasonable to look for an extension of Theorem 7 to the infinite dimensional case. Furthermore, it
bears interesting implications to the theory of nonideal quantum measurement20,21 �see Corollary
3�.

Finally, the properties of the sharp reconstruction proved in Theorems 6 and 7 allow us to
comment on the differences between the definition of unsharpness proposed in Refs. 20 and 21
�see Definition 11� and that given in Refs. 22–25 �see Definition 12�. In particular, we show that
the two definitions do not coincide even in the case of commutative POV measures. Moreover,
denoting by A1 and A2 the sets of sharp observables of which F is an unsharp version according
to Definitions 11 and 12, respectively, it is possible to see that A1�A2��. In fact, the sharp
reconstruction belongs to A1�A2. Furthermore, we show that Definition 12 can be modified in
order to enlarge A2 to a set which contains A1�A2 �see Definition 13 and Theorem 9�.

The paper is organized as follows. In Sec. II we introduce some basic definitions, state the
classical theorem of Neumark, and summarize the main results of Refs. 16 and 17. In Sec. III A
we state Theorem 4 and present some examples of POV measures such that A↔Pr A+. In Sec.
III B we prove the main result of the paper, Theorem 7, and give some examples. Then, in the last
section, we prove Corollary 3 and make some observations on the definition of an unsharp

022102-2 Roberto Beneduci J. Math. Phys. 48, 022102 �2007�

Downloaded 19 Mar 2007 to 160.97.57.125. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



observable. In Appendix A we show that we can restrict ourselves, without loss of generality, to
POV measures with a bounded spectrum. In Appendix B we prove Theorem 4. In Appendix C we
prove Lemma 1.

II. PRELIMINARIES

In this section we fix the basic notation and terminology, state the classical theorem of
Neumark, and give the characterization of commutative POV measures obtained in Refs. 16 and
17.

We denote by B�R� the Borel �-algebra of R, by 0 and 1 the null and the identity operators,
respectively, by Ls�H� the space of all bounded self-adjoint linear operators acting on a Hilbert
space H with scalar product �·,·	, by F�H��Ls�H� the subspace of all positive, bounded self-
adjoint operators on H, and by E�H��F�H� the subspace of all projection operators on H.

Definition 1: A positive operator valued measure (for short, POV measure) is a map
F :B�R�→F�H� such that
if 
�n� is a countable family of disjoint sets in B�R�, then

F� �
n=1

�

�n� = �
n=1

�

F��n� , �3�

where the series converges in the weak operator topology.
Definition 2: A POV measure is said to be

1. normalized if

F�R� = 1; �4�

2. commutative if

�F��1�,F��2�� = 0, ∀ �1,�2 � B�R�; �5�

3. orthogonal if

F��1�F��2� = 0 if �1 � �2 = � . �6�

In what follows we shall always refer to normalized POV measures defined on B�R�.
Definition 3: A projection valued measure (for short, PV measure) is an orthogonal, normal-

ized POV measure.
It is simple to see that for a PV measure E, we have E���=E���2 for any ��B�R�. Then,

E��� is a projection operator for every ��B�R�, and the PV measure is a map E :B�R�→E�H�.
In quantum mechanics, nonorthogonal normalized POV measures are also called generalized

or unsharp observables and PV measures standard or sharp observables.
We shall use the term “measurable” for the Borel measurable functions. For any vector x

�H, the map

�F�·�x,x	:B�R� → R, � � �F���x,x	 ,

is a Lebesgue-Stieltjes measure. There exists a one-to-one correspondence26 between POV mea-
sures F and POV functions F�ªF��−� ,���. In the following, we will use the symbol d�F�x ,x	 to
mean integration with respect to the measure �F�·�x ,x	.

We shall say that a function f :R→R is bounded with respect to a POV measure F if it is
equal to a bounded function g almost everywhere �a.e.� with respect to F; that is, if f =g a.e. with
respect to the measure �F�·�x ,x	, ∀x�H. For any real, bounded, and measurable function f and
for any F�F�H�, there is a unique27 bounded self-adjoint operator B�Ls�H� such that

�Bx,x	 =� f���d�F�x,x	 for each x � H . �7�
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If Eq. �7� is satisfied, we write B=�f���dF�.
Definition 4: The spectrum ��F� of a POV measure F is the closed set


� � R:F��� − �,� + ��� � 0, ∀ � � 0� .

By the spectral theorem,19,28 PV measures are in a one-to-one correspondence with self-
adjoint operators. In fact, we recall the following theorem of functional analysis.

Theorem 1 (see Ref. 19): There is a one-to-one correspondence between self-adjoint opera-
tors B on a Hilbert space H and PV measures EB on H, the correspondence being given by

B =� �dE�
B.

In the following, we do not distinguish between PV measures and the corresponding self-adjoint
operators.

If f :R→R is a measurable real-valued function, then we can define the self-adjoint operator19

f�B� =� f���dE�
B.

If f is bounded, then f�B� is bounded.19

Definition 5: Two bounded self-adjoint operators A and B are said to be equivalent if there
exists a bounded, one-to-one, measurable function f such that A= f�B�. In this case we write
A↔B.

Definition 6: We say that the triplet �F ,B ,��·�
B ���� satisfies the thesis of von Neumann’s

theorem29–31 if �����B�=F���, for every ��B�R�.
Summing up the results obtained in Refs. 15–17, we can state the following theorem.
Theorem 2 (see Refs. 16 and 17): A POV measure F :B�R�→F�H� is commutative if and

only if there exist a self-adjoint operator B and, for every ����B�, a probability measure32,33

��·�
B ��� :B�R�→ �0,1� such that the triplet �F ,B ,��·�

B ���� satisfies the thesis of von Neumann’s
theorem.

Moreover, there exists a couple �A ,��·�
A ���� such that (i) the triplet �F ,A ,��·�

A ���� satisfies the
thesis of von Neumann’s theorem, and that (ii) for every triplet �F ,B ,��·�

B ���� satisfying the thesis
of von Neumann’s theorem, there exists a real function g such that A=g�B�. The operator A is
unique up to bijections.

Definition 7: The operator A defined by Theorem 2 (or, equivalently, the corresponding PV
measure EA� is called the sharp reconstruction of F.

Theorem 2 suggests interpreting16,17 the outcomes of the measurement of F as deriving from
a randomization of the outcomes of the measurement of its sharp reconstruction EA. Indeed, for
every ��B�R� and ����A�, ����

A ��� can be interpreted as the probability that the outcome of a
measurement of F is in � when the outcome of the measurement of EA is �.

Theorem 3 (Neumark29,31): Let F be a POV measure of the Hilbert space H. Then there exist
a Hilbert space H+�H and a PV measure E+ of the space H+ such that

F��� = P+E+����H�,

where P+ is the operator of projection onto H.
Definition 8: Each operator �f���dE+, where f is a one-to-one, measurable, real-valued

function, is said to be a Naimark operator corresponding to F. The Neumark operator ��dE+ is
denoted by A+.

The following corollary yields a physical interpretation of the measurement of a nonorthogo-
nal POV measure.

Corollary 1 (see Refs. 3 and 4): For any POV measure F :B�R�→F�H�, there exists a
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Hilbert space H0, a pure state S0 in H0, and a PV measure E+ :B�R�→E�H+� in H+=H � H0 such
that

����
E+

�S � S0� = ����
F �S�, � � B�R� , �8�

for each state S in H. The converse is also true; that is, for every triplet �H0 ,S0 ,E+�, where E+ is
a PV measure in the Hilbert space H � H0 and S0 is a pure state in H0, there exists a unique POV
measure F satisfying Eq. (8).

Equation �8� establishes the existence of a pure state S0 such that the measurements of the
observables F and E+ are statistically equivalent. Therefore the measurement of an unsharp ob-
servable in the Hilbert space H is equivalent to the measurement of a sharp one in the Hilbert
space H � H0, which represents the composition between the system and additional independent
degrees of freedom described by H0.

Proposition 1: Let us consider the extension E+ of a POV measure F and the Neumark
operator A+=��dE�

+ corresponding to E+. Let f be a measurable function which is bounded with
respect to E+. Then

P+f�A+��H� =� f���dF�,

and P+f�A+��H� is a bounded self-adjoint operator. �

Proof:

�P+f�A+�x,y	 = �
−�

�

f���d�E�
+x,P+y	 = �

−�

�

f���d�F�x,y	

for every x ,y�H.
The boundedness and the self-adjointness of P+f�A+��H� come, respectively, from the bound-

edness and the real valuedness of f with respect to E+ �see Theorem 10 in Ref. 27�.
Definition 9: Whenever there exists a one-to-one, bounded, measurable function f :��A+�

→R such that the sharp reconstruction A of a commutative POV measure F is equivalent to
P+f�A+��H�, we write A↔Pr A+ and say that the sharp reconstruction A is equivalent to the
projection of a Neumark operator corresponding to F.

III. NAIMARK OPERATORS AND SHARP RECONSTRUCTIONS

In the present section we analyze the relationships between Neumark’s theorem and Theorem
2. In Sec. III A, generalizing a result obtained in Ref. 18, we show that for every commutative
POV measure F and for every bounded and measurable function f , there exists a function Gf such
that Gf�A�= P+f�A+��H�, where A and A+ are respectively the sharp reconstruction of F and the
Neumark operator ��dE�

+ corresponding to the extension E+ of F. We also give some examples
where A↔Pr A+. In Sec. III B we prove that, in the finite dimensional case, a positive answer can
be given to the problem of the equivalence between the sharp reconstruction A and the projection
of the Neumark operator, i.e., there exists always a one-to-one, bounded, and measurable function
f such that A↔P+f�A+��H�.

We recall that, as shown in Ref. 15, the sharp reconstruction A of a given POV measure F

coincides with the sharp reconstruction of the POV measure F̄ defined by F̄���
=F�f��� �0,1���, where f is a one-to-one and measurable function from �0, 1� to R and

��F̄�� �0,1�. In Appendix A we prove that A↔Pr A+ if and only if A↔Pr Ā+, having denoted by

A+ and Ā+ the Neumark operators ��dE�
+ and ��dĒ�

+ associated with F and F̄, respectively.
Therefore, in what follows, we restrict ourselves, without loss of generality, to POV measures with
spectrum in �0, 1�.
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A. The general case

In the present section we generalize Theorem 5 of Ref. 18. In particular, in Appendix B we
prove the following theorem.

Theorem 4: Let F be a commutative POV measure with spectrum in �0, 1� and A the sharp
reconstruction of F. Let E+ be the extension of F whose existence is asserted by Neumark’s
theorem, and A+ the Neumark operator ��dE�

+. Then, to each bounded and measurable function
f : �0,1�→R, there corresponds a bounded function Gf : �0,1�→R such that

B ª P+f�A+��H� = Gf�A� .

In Ref. 18, the case f =� was analyzed and it was given an example �see Example 1 below� where
the operators A and B coincide up to a bijection, thanks to the injectivity of Gf.

Example 1: Let us consider the POV measure

F��� = 

	 if 1 � � and 0 � �

C = I − 	 if 1 � � and 0 � �

I if 1,0 � �

0 if 1 � � and 0 � � ,
� �9�

where 	 is a bounded self-adjoint operator such that 0
	
 I. We can easily find a family of
probability measures ��·���� :B��0,1��→ �0,1�, �� �0,1�, such that ���	�=F���. It is sufficient
to choose

����� = 

� if 1 � � and 0 � �

1 − � if 1 � � and 0 � �

1 if 1,0 � �

0 if 1 � � and 0 � � .
� �10�

Therefore the triplet �F ,	 ,��·����� satisfies the thesis of von Neumann’s theorem. Now we show
that 	 coincides with the projection BªP+A�H

+ =�tdFt of the Neumark operator A+ corresponding
to the extension E+ of F. Indeed, we can follow the proof of Theorem 4, with the operator A
replaced by the operator 	, and f =�. Then, we get Gf

����	�=B, where Gf
�	����=�0

1+tdt��t����.
Moreover,

Gf
�	���� = �

0

1+

tdt��t
	���� = � ,

hence,

B = 	 .

Now, let us consider the sharp reconstruction A corresponding to F. By applying Theorem 4 with
f =�, we get

Gf�A� = B = 	 .

Since the triplet �F ,	 ,��·����� satisfies the thesis of von Neumann’s theorem, it follows (by Theo-
rem 2) that there exists a function g :��	�→ �0,1� such that g�	�=A. In Ref. 16 it was shown that
g is injective. Therefore, g�	�=g�Gf�A��=A and g�Gf����=� a.e. with respect to the PV measure
EA corresponding to A. This means that Gf��� is injective in ��A� so that the sharp reconstruction
A of F and the projection 	 of the Neumark operator A+ are equivalent, hence A↔Pr A+.

Next we recall an example used by Grabowski23 to analyze the concept of unsharp observable,
which we use as an example of a POV measure whose sharp reconstruction coincides �up to a
bijection� with the projection of the Neumark operator A+ �hence A↔Pr A+�.
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Example 2: Let H=C3 be the Hilbert space for a system with spin J=1, and E−1, E0, E1 the
projections corresponding to the eigenvectors of the spin observable J3=�m=−j

J mEm. Let us con-
sider the position operator Q :L2�R�→L2�R�, of a particle in R, the corresponding PV measure
E�·� :B�R�→E�L2�R��, and a vector 
�L2�R� such that �
 ,Q
	=0. Let us define the commuta-
tive POV measure

F��� = �
m=−1

1

�
,E�� + m�
	Em

in C3. The projection of the Neumark operator coincides with J3. Indeed,

�
R

�dF� = �
m

Em�
R

��
�� − m��2d� = �
m

mEm = J3.

Because of the maximality of J3 (that is, if J3=g�A�, then g is one-to-one) and of Theorem 4, the
sharp reconstruction A must be equivalent to J3, A↔J3.

B. The finite dimensional case

In this section we show that, in the finite dimensional case, the sharp reconstruction of a given
commutative POV measure is equivalent to the projection of the Neumark operator in the sense
specified by Definition 9.

Therefore, in what follows, we restrict ourselves to the finite dimensional case and consider an
n-dimensional Hilbert space H. Definition 1 becomes

Definition 10: For a finite or countable outcome set K�R, a POV measure F is an applica-
tion F :K→ 
Fk�k�K, also denoted by 
Fk�k�K, where 
Fk�k�K is a set of positive self-adjoint
operators acting on a finite dimensional Hilbert space H such that

�
k�K

Fk = 1 .

In Ref. 34, a procedure is given for obtaining the sharp reconstruction A corresponding to a
commutative POV measure F with a finite outcome set. Being interested in the spectral measure
corresponding to A, we outline the procedure for its construction, which we generalize to the case
of an infinite but countable outcome set.

Let us consider a commutative POV measure F : 
k1 , . . . ,km , . . . �→ 
Fk1
, . . . ,Fkm

, . . . � in an
n-dimensional Hilbert space H. Let Ej

�i�, j=1,2 , . . . ,n, be a set of n one-dimensional projections
corresponding to a base for H which diagonalizes the operator Fki

, and let � j
�i� be the correspond-

ing eigenvalues. Notice that the eigenvalues are not necessarily distinct. Moreover, because of the
commutativity relations

�Fki
,Fkj

� = 0, i, j = 1, . . . ,m, . . . ,

we can assume

Ej ª Ej
�i� = Ej

�l�, i,l = 1, . . . ,m, . . . , j = 1, . . . ,n ,

so that

Fki
= �

j=1

n

� j
�i�Ej . �11�

Here, the real number � j
�i� is the eigenvalue of Fki

which corresponds to the projection Ej.
Next, for any j� 
1, . . . ,n�, let us consider the sequence 
� j

�1� , . . . ,� j
�m� , . . . �. There exists a set

of projection operators E1
A ,E2

A , . . . ,EN
A, where N
n, such that the sequences 
� j

�i��i=1,. . .,m,. . ., j
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= 
1, . . . ,N�, corresponding to the projections Ej
A, j=1, . . . ,N, are distinct, i.e., for every couple of

indices �j , l� there exists an index i such that � j
�i���l

�i�. Indeed, if the sequences 
� j
�i��i=1,. . .,m,. . . and


�l
�i��i=1,. . .,m. . ., corresponding to the projections Ej and El, are equal, we can replace in Eq. �11� Ej

with the projection Ej +El and skip the lth term. Iterating this procedure, after relabeling the
indices, we get Fki

=� j=1
N � j

�i�Ej
A for every i�N, for an integer N
n. The resulting sequences


� j
�i��i=1,. . .,m,. . ., j= 
1, . . . ,N�, corresponding to the projections Ej

A, j=1, . . . ,N, are distinct. More-
over, if n�i� is the number of distinct eigenvalues of Fki

, we have n�i�
N for every i�N.
The sharp reconstruction A of F is defined34 �up to bijections� as follows:

A = �1E1
A + �2E2

A + ¯ + �NEN
A ,

where 
�i�i=1,. . .,N=��A�. The POV measure F can be interpreted as a randomization of A. Indeed,
the functions

fki

A:
�1,�2, . . . ,�N� → 
�1
�i�,�2

�i�, . . . ,�N
�i�� � R ,

� j � � j
�i�

are such that

�i� fki

A�A�=Fki

�ii� �i=1
� fki

A���=1 for every ����A�.

Item �i� is quite obvious while item �ii� comes from Definition 10. Notice that the functions fki

A are
not generally one-to-one.

The following theorem, which corresponds to the first part of Theorem 2, summarizes what
was said above.

Theorem 5: A POV measure F : 
k1 , . . . ,km , . . . �→ 
Fk1
, . . . ,Fkm

, . . . � is commutative if and
only if there exist a PV measure EA : 
�1 , . . . ,�N�→ 
E1

A , . . . ,EN
A� and a set of functions

fki

A : 
�1 , . . . ,�N�→ 
�1
�i� , . . . ,�N

�i��, i=1, . . . ,m , . . ., such that

�i� fki

A�A�=Fki
;

�ii� �i=1
� fki

A���=1 for every �� 
�1 , . . . ,�N�;
�iii� for every couple ��i ,� j� there exists an index l�N such that fkl

A��i�� fkl

A�� j�,
where A=� j=1

N � jEj
A is the self-adjoint operator corresponding to EA.

Following Martens and de Muynck20,21 �see also Definition 11�, we summarize the relationship
between POV measures and sharp reconstruction, expressed by items �i� and �ii� in Theorem 5, by
writing

EA → F .

In the finite dimensional case, the second part of Theorem 2 becomes
Theorem 6: If B and 
fki

B�i=1,. . .,m,. . . are respectively a self-adjoint operator and a family of
functions fki

B :��B�→ 
�1
�i� , . . . ,�N

�i�� such that

�i� fki

B�B�=Fki
;

�ii� �i=1
� fki

B���=1 for every ����B�;

then there exists a function g such that

g�B� = A ,

where A is the sharp reconstruction of F.
Now we can proceed to prove the main result of the paper �Theorem 7�. By Neumark’s

theorem, the POV measure 
Fkj
� j=1,. . .,m,. . . can be extended to a PV measure 
Ej

+� j=1,. . .,m,. . . in a
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Hilbert space H+�H such that P+Ej
+

�H=Fkj
. We show that there exists a one-to-one function f

such that the projection B= P+B�H
+ =� j f�kj�Fkj

of the Neumark operator B+= f�A+�=� j f�kj�Ej
+ is

equivalent to A, i.e., there exists a one-to-one function Gf such that B=Gf�A�.
The following lemma, which we prove in Appendix C, is the key to the proof of Theorem 7.
Lemma 1 (see Appendix C): A matrix of real numbers

�
�1

�1� �1
�2� . . . �1

�m� . . .

�2
�1� �2

�2� . . . �2
�m� . . .

�N
�1� �N

�2� . . . �N
�m� . . .� �12�

such that

�i� for every couple of indices �i , j� there exists an index l�N such that �i
�l��� j

�l�;
�ii� �i=1

� � j
�i�=1;

defines a compact operator T : l�→CN with the property that there exists a real vector

k1 ,k2 , . . . ,km , . . . ;ki�kj , i� j�� l� such that the elements of the image vector

�
a1

a2

]

aN

�ª��1
�1� �1

�2� . . . �1
�m� . . .

�2
�1� �2

�2� . . . �2
�m� . . .

�N
�1� �N

�2� . . . �N
�m� . . .

��
k1

k2

]

km

]

� �13�

are distinct real numbers, i.e., ai�aj if i� j.
Theorem 7: Let F : 
k1 , . . . ,km , . . . �→ 
Fk1

, . . . ,Fkm
, . . . � be a commutative POV measure with

spectrum in �0, 1�, A=�1E1
A+ . . . +�NEN

A its sharp reconstruction, E+ : 
k1 , . . . ,km , . . . �
→ 
Ek1

+ , . . . ,Ekm

+ , . . . � an extension of F whose existence is asserted by Neumark’s theorem, and A+

the Neumark operator � j=1
� kjEkj

+ . Then A↔Pr A+.
Proof: Let us consider a bounded function f : 
k1 , . . . ,km , . . . �→R and the bounded operator

B+= f�A+�=� j
�f�kj�Ekj

+ . By Lemma 1, we get

P+B�H�
+ = P+�

j

�

f�kj�Ekj

+
�H� = �

j

�

f�kj�Fkj
= �

j=1

�

f�kj��
i=1

N

�i
�j�Ei

A

= �
i=1

N ��
j=1

�

�i
�j�f�kj��Ei

A = �
i=1

N

Gf��i�Ei
A = Gf�A� , �14�

where A is the sharp reconstruction of F and

Gf��i� ª �
j=1

�

�i
�j�f�kj� 
 sup

j
�f�kj��, �i � ��A�,i = 1, . . . ,N .

In matrix form, we can write
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�
Gf��1�
Gf��2�

]

]

Gf��N�
� =��1

�1� �1
�2� . . . �1

�m� . . .

�2
�1� �2

�2� . . . �2
�m� . . .

�N
�1� �N

�2� . . . �N
�m� . . .

��
f�k1�
f�k2�
]

f�km�
]

� . �15�

Moreover, by Theorem 5 �items �ii� and �iii��, we have the following:

�i� for every couple of indices �i , j� there exists an index l�N such that �i
�l��� j

�l�;
�ii� � j=1

� �i
�j�=1 for every i� 
1,2 , . . . ,m�.

By Lemma 1, there exists a vector 
�1
+ , . . . ,�m

+ , . . . ;�i
+�� j

+ , i� j�� l� such that the function f
defined by f�k1�=�1

+ , . . . , f�km�=�m
+ , . . ., and the function Gf are one-to-one, i.e., f�ki�� f�kj� and

Gf��i��Gf�� j� if i� j. By Eq. �14�, P+f�A+�= P+B�H
+ =Gf�A� and then A↔Pr A+. �

Example 3: Let H=C2 be the Hilbert space for a system with spin J=1/2. Let P+, P− be the
projections corresponding to the eigenvectors of the spin observable Jz=1/2P+−1/2P−. Let us
consider the commutative POV measure F : 
1/2 ,−1/2�→ 
F1= �1−��P++�P− ,F2=�P++ �1
−��P−�, �+��1, which can be interpreted25,35 as the representation of the measurement of the
spin in the z direction where a “spin up” is registered as “spin down” with probability � and a spin
down is registered as spin up with probability �. The sharp reconstruction of F is

A = 1P+ + 2P−.

The functions f1 and f2 connecting F and A are defined as follows:

f1�1� = 1 − �, f1�2� = � ,

f2�1� = �, f2�2� = 1 − � .

By Neumark’s theorem there exist an extended Hilbert space H+ and an orthogonal resolution of
the identity 
E1

+ ,E2
+� in H+ such that P+Ei

+
�H=Fi. It is easy to see that the Neumark operator A+

=1/2E1
+−1/2E2

+, corresponding to the POV measure F, is such that its projection P+A�H
+ coincides,

up to a bijection, with the sharp reconstruction A.
Indeed,

P+A�H�
+ = 1/2P+E1

+ − 1/2P+E2
+ = 1/2F1 − 1/2F2 = 1/2��1 − ��P+ + �P−� − 1/2��P+ + �1 − ��P−�

= �1/2 − ��P+ + �− 1/2 + ��P− = f�A� ,

where

f�1� = 1/2 − �, f�2� = − 1/2 + � .

Example 4: Let H=C3 be the Hilbert space for a system with spin J=1. Let E−1 ,E0 ,E1 be the
projections corresponding to the eigenvectors of the spin observable J3=�m=−1

1 mEm. Let us con-
sider the POV measure 
1,2 ,3�→ 
F1=1/2E−1+1/2E0+1/4E1 ,F2=1/5E−1+1/5E0+1/4E1 ,F3

=3/10E−1+3/10E0+1/2E1�. The corresponding sharp reconstruction is A=1�E−1+E0�+2E1. The
projection of the Neumark operator A+ corresponding to F is P+A�H

+ =1F1+2F2+3F3=9/5�E−1

+E0�+9/4E1= f�A�, where f is the one-to-one function such that f�1�=9/5 and f�2�=9/4. Notice
that A is a function of J3 �A=g�J3�, where g�−1�=1, g�0�=1, and g�1�=2�.
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IV. NEUMARK’S THEOREM AND NONIDEAL QUANTUM MEASUREMENT

In this section we briefly recall the definition of nonideal quantum measurement20,21 and its
connection with Corollary 1, and analyze some implications of Theorems 6 and 7 to this connec-
tion �Corollary 3�. Moreover, we comment �Definition 13 and Theorem 9� on the relationships
between different Definitions of unsharpness.

The concept of nonideal quantum measurement of a PV measure E by means of a POV
measure F is defined as follows:

Definition 11 (see Refs. 20 and 21): The POV measure F :K→ 
Fk�k�K with a finite or
countably infinite outcome set K is said to be an unsharp version of the PV measure E :L
→ 
El�l�L if there exists a set of non-negative real numbers 
�l

�k��k�K,l�L such that

�i� �k�K�l
�k�=1.

�ii� Fk=�l�L�l
�k�El.

Remark 1: Notice that Definition 11 is equivalent to requiring that for each operator B
=�l�L�lEl, with 
�l�l�L set of distinct real numbers, there exists a set of functions 
fk

B�k�K such
that fk

B�B�=Fk �e.g., fk
B��l�=�l

�k��.
In this paper we do not distinguish between a self-adjoint operator B and the corresponding

PV measure EB. Therefore, we say that an unsharp observable, represented by a POV measure F,
is the unsharp version of a sharp observable, represented by a self-adjoint operator B, if F is the
unsharp version of the PV measure EB corresponding to B. In particular, a commutative POV
measure F is the unsharp version of its sharp reconstruction A.

Example 5: The POV measure F in Example 4 is an unsharp version of the spin observable
J3=�m=−1

1 mEi. Indeed, by setting

��1
�1� �1

�2� �1
�3�

�0
�1� �0

�2� �0
�3�

�−1
�1� �−1

�2� �−1
�3� � = �1/2 1/5 3/10

1/2 1/5 3/10

1/4 1/4 1/2
�

we get E→F, where E= 
E−1 ,E0 ,E1�. Moreover, by Remark 1, there exists a family of functions fi

such that f i�J3�=Fi, then by Theorem 6, there is a function g such that g�J3�=A, where A=E−1

+E0+2E1 is the sharp reconstruction of F.
Before giving the connection between Definition 11 and Corollary 1, we state the latter in the

finite dimensional case.
Corollary 2 (see Refs. 3, 9, and 21): For every POV measure 
Fk�k�K on H, with a finite or

countable outcome set K, there is a Hilbert space H�, a density operator �� on H�, and a PV
measure 
Ek

+�k�K on H � H� such that

Fk = TrH����Ek
+� .

The connection mentioned above is summarized by the following theorem.

Theorem 8 (see Refs. 20 and 21): Let Ā=�aaĒa be a self-adjoint operator on H and A+

=�kkEk
+ a self-adjoint operator on H � H�. If there exist a self-adjoint operator T=�llEl� on H�

and a function k�a , l� such that A+=k�A ,T�, then for every density operator �� on H�,

Ē → F ,

where Ē and F are respectively the PV measure corresponding to Ā and the POV measure defined
by Fk=TrH����Ek

+�.
The following corollary is a consequence of Theorems 6 and 7.
Corollary 3: Under the hypothesis of Theorem 8, let us consider the density operator ��, the

corresponding POV measure Fk=TrH����Ek
+�, and its sharp reconstruction A. If the function

f�a�=�lk�a , l�TrH����El�� is one-to-one, then A↔ Ā. Conversely, if A↔ Ā then there exists a one-
to-one function h such that the function r�a�=�lh�k�a , l��TrH����El�� is one-to-one.
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Proof: Assume f is one-to-one. Since Ē→F, there exists �by Theorem 6� a function g such
that

g�Ā� = A ,

where A=��nEn is the sharp reconstruction of F. Moreover, proceeding as in Eq. �14� in theorem
7, we get a function G such that

G�A� = �
k

kFk. �16�

Hence,

G�g�Ā�� = �
k

kFk = TrH����A+� = �
a
��

l

k�a,l�TrH����El���Ēa = f�Ā� ,

which shows that f is one-to-one if and only if both g and G are one-to-one. The thesis comes

from the fact that f is one-to-one. Conversely, if A↔ Ā, then there is a one-to-one function g such

that A=g�Ā�. Furthermore, by Theorem 7, there exist two one-to-one functions h and Gh such that

Gh�A� = �
k

h�k�Fk = TrH����h�A+�� = r�Ā� ,

where

r�a� = �
l

h�k�a,l��TrH����El�� ,

which means that r=g−1 �Gh is one-to-one �the symbol � denotes the operation of composition
between functions�. �

We recall that another definition of “unsharpness” is the following:22–25

Definition 12: The observable represented by the POV measure F :K→ 
Fk�k�K is an unsharp
version of the observable represented by a self-adjoint operator B, if there exists a sequence of
real numbers 
�k�k�K such that

B = �
k

�kFk.

.
Example 6: From Example 3 we have that the observables P+, P−, and f�A� can be written as

P+= �1−�� / �1−�−��F1+ �−� / �1−�−���F2, P−= �−� / �1−�−���F1+ �1−�� / �1−�−��F2, and f�A�
=1/2F1−1/2F2. Therefore, F is an unsharp version of P+, P− and f�A�. Moreover, this shows that
all the observables which are function of the sharp reconstruction A can be represented as a sum
of the kind ��iFi. Notice that F is not an unsharp version of P+ and P− in the sense of Definition
11.

Grabowski23 conjectured that Definition 12 is equivalent to Definition 11, but Uffink25 ob-
served that this is false since, according to Definition 11, any unsharp version of a sharp observ-
able B must be commutative and this is not true for Definition 12. Now we show that also in the
case where we restrict ourselves to commutative POV measures, Grabowski’s conjecture is false.
Indeed, let us consider the POV measure F in Example 4. From Example 5 it follows that A
=g�J3�, where A is the sharp reconstruction of F and g is not one-to-one since g�−1�=g�0�=1.
Assume F to be the unsharp version of J3 in the sense of Definition 12, i.e.,

022102-12 Roberto Beneduci J. Math. Phys. 48, 022102 �2007�

Downloaded 19 Mar 2007 to 160.97.57.125. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J3 = �
i=1

3

�iFi.

By proceeding as in Eq. �14�, we get a function G�j�=�i� j
�i��i such that

G�A� = �
i=1

3

�iFi.

Then

G�A� = J3 and g�J3� = A ,

hence

G�g�J3�� = J3,

which means that g is one-to-one and contradicts the hypothesis. Therefore, F is an unsharp
version of J3 according to Definition 11 but not according to Definition 12.

The following definition is a generalization of both Definitions 11 and 12.
Definition 13: The observable represented by the POV measure F :K→ 
Fk�k�K is an unsharp

version of the observable represented by the operator B if there exist a function h and a sequence
of real numbers 
�k�k�K such that

h�B� = �
k

�kFk.

Theorem 9: If F is an unsharp version of B according to Definitions 11 or 12, then it is an
unsharp version of B according to Definition 13.

Proof: Let EB be the PV measure corresponding to the self-adjoint operator B. If EB→F then
there exists a function g such that g�B�=A, where A is the sharp reconstruction of F. Moreover,
proceeding as in Eq. �14�, we get, for any bounded function f :K→R, a function Gf such that
Gf�A�=�kf�k�Fk, hence

h�B� ª Gf�g�B�� = �
k

f�k�Fk = �
k

�kFk,

where we have set �kª f�k�. Clearly, if F is an unsharp version of B according to Definition 12,
then it is an unsharp version of B according to Definition 13 �it is sufficient to choose h���=��.�

In order to outline the relationships between Definitions 11 and 12, we introduce the sets A1,
A2, and A2� as follows:

�i� by Definition 11 �see Theorem 6�, the set of sharp observables of which F is an unsharp
version is the set

A1 = 
B � Ls�H��there exists a function h such that h�B� = A�;

�ii� by Definition 12 �see Theorem 7�, the set A2 of sharp observables of which F is an unsharp
version is a subset of

A2� = 
B � Ls�H��there exists a function g such that B = g�A�� ,

where A is the sharp reconstruction of F.
The two sets A1 and A2� have a nonempty intersection; e.g., each self-adjoint operator B such

that A=g�B�, with g one-to-one, belongs to A1�A2�. Moreover, we have proved that A1�A2

�� and, in particular, that the sharp reconstruction of F is contained in A1�A2. Now it is clear
why Definition 13 is a generalization of both Definitions 11 and 12; it enlarges A2 to a set A such
that A1�A2�A�A1�A2� �notice that for the POV measure in Example 3, A2=A2� and then
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A=A1�A2��. A problem to be faced in future investigations is to search for a common meaning
of the concepts of unsharpness given by Definitions 11 and 12. However, it is worth noticing that
the observables in A2 can be recovered from F �by appropriately choosing the coefficients in the
sum ��kFk�, while for the observables in A1, this is true only for those observables which are
equivalent to the sharp reconstruction A of F. Conversely, F can be recovered by each observable
B�A1 since to each B�A1 there corresponds a set of functions fk

B such that fk
B�B�=Fk. Then, we

can say that in A2 there are observables which contain less information than F and observables
which contain the same information as F, while in A1 there are observables which contain more
information than F and observables which contain the same information as F.

APPENDIX A: POV MEASURES WITH SPECTRUM IN †0, 1‡

Let F̄ :B�R�→F�H�, F̄���=F�f��� �0,1���, be the POV measure with spectrum in �0, 1�
corresponding to the POV measure F :B�R�→F�H� as stated in Sec. III. If the PV measure
E+ :B�R�→E�H� is the extension of F, whose existence is asserted by Neumark’s theorem, then

Ē+���=E+�f��� �0,1��� is the extension of F̄. Indeed, P+Ē+����H= P+E+�f��� �0,1����H
=F�f��� �0,1���= F̄���.

Theorem 10: Let F and F̄ be two commutative POV measures such that F̄���
=F�f��� �0,1���; let E+ and Ē+ be the corresponding extensions as stated above. Then A↔Pr A+

holds if and only if A↔Pr Ā+ holds.
Proof: By the change of measure principle,28 we get

Ā+ = �
−�

�

�dĒ�
+ = �

−�

�

�Ē+��� − d�,��� = �
−�

�

�E+��f��� − d�,��� � �0,1���

= �
�0,1�

�E+�f��� − d�,���� = �
−�

�

f−1���dE�
+ = f−1�A+� . �A1�

If A↔Pr A+, then there exist two one-to-one, bounded measurable functions g��� and h��� such

that g�A�= P+h�A+�= P+h�f�Ā+��. Therefore, there exists a one-to-one, bounded, measurable func-

tion H���=h�f���� such that g�A�= P+H�Ā+�, which proves that A↔Pr Ā+. Conversely, if

A↔Pr Ā+, then there exist two one-to-one, bounded, measurable functions g��� and H��� such

that g�A�= P+H�Ā+�= P+H�f−1�A+��. Therefore, there exist two one-to-one, bounded, measurable
functions g��� and h���=H�f−1���� such that g�A�= P+h�A+�, which proves that A↔Pr A+. �

APPENDIX B: PROOF OF THEOREM 4

Proof: The function f : �0,1�→R �we denote by m and M, respectively, the infimum and the
supremum of f in �0, 1�� and the POV measure F uniquely define27 a self-adjoint bounded operator
by means of the relation

�Bx,x	 = �
�0,1�

f�t�dt�Ftx,x	 . �B1�

One has

�Bx,x	 = �
�0,1�

f�t�dt�Ftx,x	 = �
�0,1�

f�t�dt��
�0,1�

�t
A���d��E�

Ax,x	�
= �

�0,1�
��

�0,1�
f�t�dt��t

A�����d��E�
Ax,x	 = �Gf�A�x,x	 for every x � H , �B2�

where
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Gf��� = �
�0,1�

f�t�dt��t
A���� , �B3�

EA and ��·�
A ��� are respectively the PV measure corresponding to the sharp reconstruction A and

the probability measure whose existence is asserted by Theorem 2, and we have denoted by
dt��t

A���d��E�
Ax ,x	 the integration with respect to the measure ��·�=���·�

A ���d��E�
Ax ,x	.

In order to justify the change in the order of integration in Eq. �B2�, we proceed as follows.
First, we notice that

��·� = �
�0,1�

��·�
A ���d��E�

Ax,x	 = �F�·�x,x	

is, for every x�H, a Lebesgue-Stieltjes measure. Therefore, by the definition of Lebesgue-
Stieltjes integral,36

�
�0,1�

f�t�dt��t� = lim
n→�

��n�→0

�
k=1

n

fk−1
�n� �
t � �0,1�:f�t� � �fk−1

�n� , fk
�n���

= lim
n→�

��n�→0

�
k=1

n

fk−1
�n� �

�0,1�
��Ek−1

�n� �
A ����E�x,x	 = lim

n→�

��n�→0

�
�0,1�

�
k=1

n

fk−1
�n� ��Ek−1

�n� �
A ����E�x,x	 ,

�B4�

where a sequence of subdivisions was introduced, �n= 
�f0 , f1
�n�� , �f1

�n� , f2
�n�� , . . . , �fn−1

�n� , fn��, m= f0

� f1� . . . � fn=M, of the interval �m ,M�, such that ��n�=max1
k
n
�fk
�n�− fk−1

�n� ��→0 when n→�

and it was set Ek−1
�n� = 
t� �0,1� : f�t�� �fk−1

�n� , fk
�n���.

Now let us consider the sequence of functions

Hn��� = �
k=1

n

fk−1
�n� ��Ek−1

�n� �
A ��� .

One has

Hn��� 
 sup
�f �����0,1����� = M � �

for each �� �0,1� and n�N.
Moreover, by the integrability of f with respect to ��·�

A ���,

lim
n→�

Hn��� = �
�0,1�

f�t�dt�t
A��� = Gf��� .

By Theorem 11 in Ref. 27,

lim
n→�

�
�0,1�

�
k=1

n

fk−1
�n� ��Ek−1

�n� �����E�x,x	 = lim
n→�

�
�0,1�

Hn����E�x,x	 = �
�0,1�

lim
n→�

Hn����E�x,x	

= �
�0,1�

��
�0,1�

f�t�dt�t
A�����E�

Ax,x	

= �
�0,1�

Gf����E�
Ax,x	 = �Gf�A�x,x	 .

The polarization identity completes the proof. �
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APPENDIX C: PROOF OF LEMMA 1

Proof: By item �ii�,

ai = �
j=1

�

�i
�j�kj 
 sup

j
�kj��

j

�

�i
�j� = sup

j
�kj� � � ,

which means that T is defined everywhere on l� and bounded. The compactness of T derives from
�see Ref. 29, p. 58�

�
i,j

��i
�j��2 = N � � .

Now, we proceed by induction on N.
Step 1: The thesis is true for N=2. If N=2, Eq. �13� becomes

��1
�1� �1

�2� . . . �1
�m� . . .

�2
�1� �2

�2� . . . �2
�m� . . .

��
k1

k2

]

km

]

� = �a1

a2
� . �C1�

We start from a real vector 
k1 ,k2 , . . . ,km , . . . ;ki�kj , i� j�� l�. Suppose a1=a2. By item �ii�, we
can assume, without loss of generality, �1

�1���2
�1� so that by replacing k1 with k1��ki, i�N, we get

��1
�1� �1

�2� . . . �1
�m� . . .

�2
�1� �2

�2� . . . �2
�m� . . .

��
k1�

k2

]

km

]

� = �ã1

ã2
� , �C2�

where ã1� ã1. Indeed,

ãi − ai = �k1 − k1���i
�1�, i = 1,2,

then

ã1 − ã2 = �a1 − a2� + �k1 − k1����1
�1� − �2

�1�� = �k1 − k1����1
�1� − �2

�1�� � 0.

Step 2: Induction on N. Suppose that the thesis is true for N=n. The case N=n+1 reads

�
a1

a2

]

]

an+1

� ª� �1
�1� �1

�2� . . . �1
�m� . . .

�2
�1� �2

�2� . . . �2
�m� . . .

�n+1
�1� �n+1

�2� . . . �n+1
�m� . . .

��
k1

k2

]

km

]

� . �C3�

Consider the subsystem
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�
a1

a2

]

]

an

� =��1
�1� �1

�2� . . . �1
�m� . . .

�2
�1� �2

�2� . . . �2
�m� . . .

�n
�1� �n

�2� . . . �n
�m� . . .

��
k1

k2

]

km

]

� . �C4�

By the induction hypothesis, there exists a real vector 
k1 , . . . ,km , . . . �ki�kj , i� j�� l� such that
the image vector satisfies the thesis of the lemma, i.e., ai�aj if i� j, i , j=1, . . . ,n. Let us return to
consider system �C3� and suppose, without loss of generality, an+1=a1. By item �i�, we can
assume, without loss of generality, �1

�1���n+1
�1� . By replacing k1 with a number k1� such that

k1� � 
kj , j � N

k1 −
�aj − ai�

�� j
�1� − �i

�1��
if � j

�1� � �i
�1�,i, j = 1,2, . . . ,n + 1, � �C5�

we get

� �1
�1� �1

�2� . . . �1
�m� . . .

�2
�1� �2

�2� . . . �2
�m� . . .

�n+1
�1� �n+1

�2� . . . �n+1
�m� . . .

��
k1�

k2

]

km

]

� =�
ã1

ã2

]

ãn+1

� , �C6�

where ãi� ãj, i� j. Indeed,

ãi − ai = �k1� − k1��i
�1� �C7�

and, by subtracting Eq. �C7� from

ãj − aj = �k1� − k1�� j
�1�,

we get

ãj − ãi = �k1� − k1��� j
�1� − �i

�1�� + �aj − ai� . �C8�

By imposing ãj − ãi�0 whenever � j
�1���i

�1�, we get the second solution of Eq. �C5�. Moreover, if
� j

�1�=�i
�1� �which is false if i=1 and j=n+1�, then ãj − ãi=aj −ai�0 for each choice of k1�. �
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