1,346 research outputs found

    Green cities and health: a question of scale?

    Get PDF
    <p><b>Background:</b> Cities are expanding and accommodating an increasing proportion of the world's population. It is important to identify features of urban form that promote the health of city dwellers. Access to green space has been associated with health benefits at both individual and neighbourhood level. We investigated whether a relationship between green space coverage and selected mortality rates exists at the city level in the USA.</p> <p><b>Methods:</b> An ecological cross-sectional study. A detailed land use data set was used to quantify green space for the largest US cities (n=49, combined population of 43 million). Linear regression models were used to examine the association between city-level ‘greenness’ and city-level standardised rates of mortality from heart disease, diabetes, lung cancer, motor vehicle fatalities and all causes, after adjustment for confounders.</p> <p><b>Results:</b> There was no association between greenness and mortality from heart disease, diabetes, lung cancer or automobile accidents. Mortality from all causes was significantly higher in greener cities.</p> <p><b>Conclusions:</b> While considerable evidence suggests that access to green space yields health benefits, we found no such evidence at the scale of the American city. In the USA, greener cities tend also to be more sprawling and have higher levels of car dependency. Any benefits that the green space might offer seem easily eclipsed by these other conditions and the lifestyles that accompany them. The result merits further investigation as it has important implications for how we increase green space access in our cities.</p&gt

    Topophilia and the Quality of Life

    Get PDF
    With this research I tested the hypothesis that individual preferences for specific ecosystem components and restorative environments are significantly associated with quality of life (QOL). A total of 379 human subjects responded to a structured 18-item questionnaire on topophilia and to the 26-item World Health Organization’s Quality of Life (WHOQOL-Bref) instrument. Confirmatory factor analyses revealed four domains of topophilia (ecodiversity, synesthetic tendency, cognitive challenge, and familiarity) and four domains of QOL (physical, psychological, social, and environmental). Synesthetic tendency was the strongest domain of topophilia, whereas the psychological aspect of QOL was the strongest. Structural equation modeling was used to explore the adequacy of a theoretical model linking topophilia and QOL. The model fit the data extremely well: χ(2) = 5.02, p = 0.414; correlation = 0.12 (p = 0.047). All four domains of topophilia were significantly correlated with the level of restoration experienced by respondents at their current domicile [for cognitive challenge: r = 0.19; p < 0.01; familiarity: r = 0.12; p < 0.05; synesthetic tendency: r = 0.18; p < 0.01; ecodiversity (the highest value): r = 0.28; p < 0.01]. Within ecodiversity, preferences for water and flowers were associated with high overall QOL (r = 0.162 and 0.105, respectively; p < 0.01 and 0.05, respectively). Within the familiarity domain, identifiability was associated with the environmental domain of QOL (r = 0.115; p < 0.05), but not with overall QOL. These results provide a new methodologic framework for linking environmental quality and human health and for implementing evidence-based provision of restorative environments through targeted design of built environments to enhance human QOL

    Modelling trade offs between public and private conservation policies

    Get PDF
    To reduce global biodiversity loss, there is an urgent need to determine the most efficient allocation of conservation resources. Recently, there has been a growing trend for many governments to supplement public ownership and management of reserves with incentive programs for conservation on private land. At the same time, policies to promote conservation on private land are rarely evaluated in terms of their ecological consequences. This raises important questions, such as the extent to which private land conservation can improve conservation outcomes, and how it should be mixed with more traditional public land conservation. We address these questions, using a general framework for modelling environmental policies and a case study examining the conservation of endangered native grasslands to the west of Melbourne, Australia. Specifically, we examine three policies that involve: i) spending all resources on creating public conservation areas; ii) spending all resources on an ongoing incentive program where private landholders are paid to manage vegetation on their property with 5-year contracts; and iii) splitting resources between these two approaches. The performance of each strategy is quantified with a vegetation condition change model that predicts future changes in grassland quality. Of the policies tested, no one policy was always best and policy performance depended on the objectives of those enacting the policy. This work demonstrates a general method for evaluating environmental policies and highlights the utility of a model which combines ecological and socioeconomic processes.Comment: 20 pages, 5 figure

    The association between green space and cause-specific mortality in urban New Zealand: an ecological analysis of green space utility

    Get PDF
    &lt;b&gt;Background:&lt;/b&gt; There is mounting international evidence that exposure to green environments is associated with health benefits, including lower mortality rates. Consequently, it has been suggested that the uneven distribution of such environments may contribute to health inequalities. Possible causative mechanisms behind the green space and health relationship include the provision of physical activity opportunities, facilitation of social contact and the restorative effects of nature. In the New Zealand context we investigated whether there was a socioeconomic gradient in green space exposure and whether green space exposure was associated with cause-specific mortality (cardiovascular disease and lung cancer). We subsequently asked what is the mechanism(s) by which green space availability may influence mortality outcomes, by contrasting health associations for different types of green space. &lt;b&gt;Methods:&lt;/b&gt; This was an observational study on a population of 1,546,405 living in 1009 small urban areas in New Zealand. A neighbourhood-level classification was developed to distinguish between usable (i.e., visitable) and non-usable green space (i.e., visible but not visitable) in the urban areas. Negative binomial regression models were fitted to examine the association between quartiles of area-level green space availability and risk of mortality from cardiovascular disease (n = 9,484; 1996 - 2005) and from lung cancer (n = 2,603; 1996 - 2005), after control for age, sex, socio-economic deprivation, smoking, air pollution and population density. &lt;b&gt;Results:&lt;/b&gt; Deprived neighbourhoods were relatively disadvantaged in total green space availability (11% less total green space for a one standard deviation increase in NZDep2001 deprivation score, p &#60; 0.001), but had marginally more usable green space (2% more for a one standard deviation increase in deprivation score, p = 0.002). No significant associations between usable or total green space and mortality were observed after adjustment for confounders. &lt;b&gt;Conclusion&lt;/b&gt; Contrary to expectations we found no evidence that green space influenced cardiovascular disease mortality in New Zealand, suggesting that green space and health relationships may vary according to national, societal or environmental context. Hence we were unable to infer the mechanism in the relationship. Our inability to adjust for individual-level factors with a significant influence on cardiovascular disease and lung cancer mortality risk (e.g., diet and alcohol consumption) will have limited the ability of the analyses to detect green space effects, if present. Additionally, green space variation may have lesser relevance for health in New Zealand because green space is generally more abundant and there is less social and spatial variation in its availability than found in other contexts

    WFC3 Calibration and Data Processing

    Get PDF
    Wide Field Camera 3 (WFC3), a panchromatic imager being developed for the Hubble Space Telescope (HST), is now fully integrated and over the past year has completed first rounds of extensive ground testing at Goddard Space Flight Center (GSFC), in both ambient and thermal-vacuum test environments. This report summarizes the results of those tests and describes the pipeline processing methods that will be used to calibrate WFC3 data. WFC3 is designed to ensure that the superb imaging performance of HST is maintained through the end of the mission and takes advantage of recent developments in detector technology to provide new and unique capabilities for HST. WFC3 contains ultraviolet/visible (UVIS) and near-infrared (IR) imaging channels, offering high sensitivity and wide field of view over the broadest wavelength range of any HST instrument. It is slated to replace the current Wide Field and Planetary Camera 2 during Servicing Mission 4. The WFC3 UVIS channel is based on elements from the Advanced Camera for Surveys (ACS)Wide Field Camera (WFC), with a 4096x4096 pixel Marconi CCD covering a 160x160 arcsecond field of view. The WFC3 UVIS channel is optimized for maximum sensitivity in the near-UV and contains a complement of 48 spectral filters and a grism. The WFC3 IR channel uses a 1024x1024 pixel HgCdTe Hawaii-1R detector array covering a 135x135 arcsecond field of view. The array sensitivity is optimized in the 0.8-1.7micron spectral range. The IR channel accomodates 15 filters and 2 grisms for slitless spectroscopy

    A systematic review of evidence for the added benefits to health of exposure to natural environments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing interest in the potential role of the natural environment in human health and well-being. However, the evidence-base for specific and direct health or well-being benefits of activity within natural compared to more synthetic environments has not been systematically assessed.</p> <p>Methods</p> <p>We conducted a systematic review to collate and synthesise the findings of studies that compare measurements of health or well-being in natural and synthetic environments. Effect sizes of the differences between environments were calculated and meta-analysis used to synthesise data from studies measuring similar outcomes.</p> <p>Results</p> <p>Twenty-five studies met the review inclusion criteria. Most of these studies were crossover or controlled trials that investigated the effects of short-term exposure to each environment during a walk or run. This included 'natural' environments, such as public parks and green university campuses, and synthetic environments, such as indoor and outdoor built environments. The most common outcome measures were scores of different self-reported emotions. Based on these data, a meta-analysis provided some evidence of a positive benefit of a walk or run in a natural environment in comparison to a synthetic environment. There was also some support for greater attention after exposure to a natural environment but not after adjusting effect sizes for pretest differences. Meta-analysis of data on blood pressure and cortisol concentrations found less evidence of a consistent difference between environments across studies.</p> <p>Conclusions</p> <p>Overall, the studies are suggestive that natural environments may have direct and positive impacts on well-being, but support the need for investment in further research on this question to understand the general significance for public health.</p
    corecore