132 research outputs found

    The Cosmic Coincidence as a Temporal Selection Effect Produced by the Age Distribution of Terrestrial Planets in the Universe

    Full text link
    The energy densities of matter and the vacuum are currently observed to be of the same order of magnitude: (Ωm00.3)(ΩΛ00.7)(\Omega_{m 0} \approx 0.3) \sim (\Omega_{\Lambda 0} \approx 0.7). The cosmological window of time during which this occurs is relatively narrow. Thus, we are presented with the cosmological coincidence problem: Why, just now, do these energy densities happen to be of the same order? Here we show that this apparent coincidence can be explained as a temporal selection effect produced by the age distribution of terrestrial planets in the Universe. We find a large (68\sim 68 %) probability that observations made from terrestrial planets will result in finding Ωm\Omega_m at least as close to ΩΛ\Omega_{\Lambda} as we observe today. Hence, we, and any observers in the Universe who have evolved on terrestrial planets, should not be surprised to find ΩmΩΛ\Omega_m \sim \Omega_{\Lambda}. This result is relatively robust if the time it takes an observer to evolve on a terrestrial planet is less than 10\sim 10 Gyr.Comment: Submitted to Ap

    Low-Dimensional Chaotic Attractors for an Unstable, Inhomogeneously Broadened, Single-Mode Laser

    Get PDF
    Quantitative characterization of the intensity pulsations from an inhomogeneously broadened laser confirm that observed irregular pulsing has its origins in deterministic chaos corresponding to motion on a strange attractor of low fractal dimensionality. The pointwise information dimension and the Grassberger-Procaccia K2 (estimators from below of the fractal dimensionality of the attractor and the Kolmogorov entropy, respectively) have been determined for digitized time series from parameter regions identified qualitatively by power spectra as representing periodic, period-doubled, quasi-periodic, and chaotic behavior. Some amount of chaos seems present for almost all operating conditions

    Low-Dimensional Chaotic Attractors for an Unstable, Inhomogeneously Broadened, Single-Mode Laser

    Get PDF
    Quantitative characterization of the intensity pulsations from an inhomogeneously broadened laser confirm that observed irregular pulsing has its origins in deterministic chaos corresponding to motion on a strange attractor of low fractal dimensionality. The pointwise information dimension and the Grassberger-Procaccia K2 (estimators from below of the fractal dimensionality of the attractor and the Kolmogorov entropy, respectively) have been determined for digitized time series from parameter regions identified qualitatively by power spectra as representing periodic, period-doubled, quasi-periodic, and chaotic behavior. Some amount of chaos seems present for almost all operating conditions

    Proposal for measurment of harmonic oscillator Berry phase in ion traps

    Get PDF
    We propose a scheme for measuring the Berry phase in the vibrational degree of freedom of a trapped ion. Starting from the ion in a vibrational coherent state we show how to reverse the sign of the coherent state amplitude by using a purely geometric phase. This can then be detected through the internal degrees of freedom of the ion. Our method can be applied to preparation of Schr\"odinger cat states.Comment: Replaced with revised versio

    Origin of Life

    Full text link
    The evolution of life has been a big enigma despite rapid advancements in the fields of biochemistry, astrobiology, and astrophysics in recent years. The answer to this puzzle has been as mind-boggling as the riddle relating to evolution of Universe itself. Despite the fact that panspermia has gained considerable support as a viable explanation for origin of life on the Earth and elsewhere in the Universe, the issue remains far from a tangible solution. This paper examines the various prevailing hypotheses regarding origin of life like abiogenesis, RNA World, Iron-sulphur World, and panspermia; and concludes that delivery of life-bearing organic molecules by the comets in the early epoch of the Earth alone possibly was not responsible for kick-starting the process of evolution of life on our planet.Comment: 32 pages, 8 figures,invited review article, minor additio

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    On the "Galactic Habitable Zone"

    Get PDF
    The concept of Galactic Habitable Zone (GHZ) was introduced a few years ago as an extension of the much older concept of Circumstellar Habitable Zone. However, the physical processes underlying the former concept are hard to identify and even harder to quantify. That difficulty does not allow us, at present, to draw any significant conclusions about the extent of the GHZ: it may well be that the entire Milky Way disk is suitable for complex life.Comment: 12 pages, 6 figures, Invited talk in "Strategies for Life Detection" (ISSI Bern, 24-28 April 2006), Eds, J. Bada et al., to appear in Space Science Review

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    The control parameterization method for nonlinear optimal control: A survey

    Get PDF
    The control parameterization method is a popular numerical technique for solving optimal control problems. The main idea of control parameterization is to discretize the control space by approximating the control function by a linear combination of basis functions. Under this approximation scheme, the optimal control problem is reduced to an approximate nonlinear optimization problem with a finite number of decision variables. This approximate problem can then be solved using nonlinear programming techniques. The aim of this paper is to introduce the fundamentals of the control parameterization method and survey its various applications to non-standard optimal control problems. Topics discussed include gradient computation, numerical convergence, variable switching times, and methods for handling state constraints. We conclude the paper with some suggestions for future research

    Berry and Pancharatnam Topological Phases of Atomic and Optical Systems

    Full text link
    Theoretical and experimental studies of Berry and Pancharatnam phases are reviewed. Basic elements of differential geometry are presented for understanding the topological nature of these phases. The basic theory analyzed by Berry in relation to magnetic monopoles is presented. The theory is generalized to nonadiabatic processes and to noncyclic Pancharatnam phases. Different systems are discussed including polarization optics, n-level atomic systems, neutron interferometry and molecular topological phases.Comment: Review article,72 pages, 186 reference
    corecore