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Abstract. The control parameterization method is a popular numerical tech-

nique for solving optimal control problems. The main idea of control parame-

terization is to discretize the control space by approximating the control func-
tion by a linear combination of basis functions. Under this approximation

scheme, the optimal control problem is reduced to an approximate nonlinear

optimization problem with a finite number of decision variables. This approx-
imate problem can then be solved using nonlinear programming techniques.

The aim of this paper is to introduce the fundamentals of the control parame-

terization method and survey its various applications to non-standard optimal
control problems. Topics discussed include gradient computation, numerical

convergence, variable switching times, and methods for handling state con-
straints. We conclude the paper with some suggestions for future research.

1. Introduction. The field of optimal control is concerned with determining con-
trol strategies for manipulating real-world systems in the best possible manner.
Optimal control has applications in almost every area of science and engineering,
including aquaculture modelling [80], cancer chemotherapy [51], switching power
converters [48], spacecraft attitude control [1], and underwater vehicles [15]. The
main theoretical tools for solving optimal control problems analytically are the fa-
mous Pontryagin minimum principle and the Hamilton-Jacobi-Bellman equation.
Practical problems, however, are usually too complex to solve using analytical tech-
niques alone, and thus numerical methods are indispensable for applications.

One such numerical method is the control parameterization technique—the topic
of this paper. The control parameterization technique involves approximating the
control function by a linear combination of basis functions, where the coefficients
in the linear combination are decision variables to be chosen optimally. Applying
this approximation scheme yields a finite-dimensional approximation of the original
optimal control problem. By designing special algorithms for computing the gradi-
ents of the cost and constraint functions, the approximate problem can be solved
using standard gradient-based optimization techniques such as conjugate gradient
methods and sequential quadratic programming [50, 53].
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Control parameterization is most commonly applied using a piecewise-constant
approximation scheme, with the control values as decision variables. The popu-
larity of the piecewise-constant approximation scheme is due to its simplicity: im-
plementing a piecewise-constant control signal—i.e. a finite sequence of constant
input values—is often much easier than implementing a continuously-changing con-
trol signal. Moreover, in many practical control problems (e.g. bang-bang control
problems), the true optimal control is indeed a piecewise-constant function. Other
advantages of the piecewise-constant approximation scheme include its strong con-
vergence properties and its versatility at handling non-standard optimal control
problems. The MISER 3.3 optimal control software [21], which is based on the con-
trol parameterization method, allows the user to choose between piecewise-constant
and piecewise-linear approximation schemes.

The fundamentals of the control parameterization method are comprehensively
described in the 1991 monograph A Unified Computational Approach to Optimal
Control Problems by Teo, Goh, and Wong (reference [65]). However, this mono-
graph is now out of print, and many important results have appeared since its
publication in the early 1990s. Reference [56] surveys the key developments in the
control parameterization method up until 1999, but this reference is also now out
of date and difficult to access. Thus, given the many significant advances in the
area of control parameterization over the past decade, it seems apt to write a new
survey paper discussing the latest developments in this area. This is the aim of our
current paper, which is designed to be both a tutorial introducing the fundamental
concepts, as well as a survey of recent results.

The paper is organized as follows. We first describe the formulation of a standard
optimal control problem in Section 2. Next, in Section 3, we introduce the tradi-
tional control parameterization approach in which the control is approximated by a
piecewise-constant function with variable control heights and fixed switching times.
In Section 4, we consider the superior approach in which both the control heights
and the switching times are decision variables to be chosen optimally. We give a
complete description of the computational difficulties caused by variable switching
times, thereby justifying the use of the so-called time-scaling transformation for
circumventing these difficulties. We are not aware of any similar analysis in the
literature; although many papers allude to the computational difficulties caused by
variable switching times, the exact nature of these difficulties is still poorly under-
stood. In Section 5, we discuss two methods for handling continuous inequality
constraints—the constraint transcription method and the recently-developed exact
penalty method—and in Section 6, we discuss applications of the control parame-
terization method to non-standard optimal control problems. Finally, in Section 7,
we conclude the paper with a discussion of future research opportunities.

2. Standard optimal control problems. The classical optimal control problem
involves a dynamic system of the following form:

ẋ(t) = f(t,x(t),u(t)), t ∈ [0, T ], (1)

x(0) = x0, (2)

where t denotes time, x(t) ∈ Rn is the state of the system at time t, u(t) ∈ Rr
is the control signal at time t, x0 ∈ Rn is a given initial state, T > 0 is a given
terminal time, and f : R×Rn ×Rr → Rn is a given function. The interval [0, T ] is
called the time horizon for the system.
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The control signal in (1)-(2) is an input variable to be chosen optimally. The
system evolves under the influence of the control signal according to equation (1),
which expresses the rate of change of the system’s state as a function of the current
time, the current state, and the current value of the control signal. Thus, the control
signal drives the system’s evolution from t = 0 to t = T .

Typically, bound constraints are imposed on the control signal:

ai ≤ ui(t) ≤ bi, t ∈ [0, T ], i = 1, . . . , r, (3)

where ai and bi, i = 1, . . . , r, are given real numbers such that ai < bi. These
bound constraints often express physical limitations (the control signal cannot be
unbounded in a real system).

Any Borel measurable function u : [0, T ]→ Rr satisfying (3) almost everywhere
is called an admissible control. Let U denote the class of all such admissible controls.

The solution or state trajectory of (1)-(2) is a continuous function x : [0, T ]→ Rn
satisfying the dynamics (1) almost everywhere and the initial condition (2). Since u
influences the state’s evolution through equation (1), the state trajectory clearly
depends on u. Thus, different controls produce different state trajectories. When
the function f on the right-hand side of (1) satisfies some mild conditions, a unique
state trajectory exists for each admissible control (see [2, 3, 65] for more details). We
assume throughout this paper that system (1)-(2) admits a unique state trajectory
for each u ∈ U . Let x(·|u) denote this state trajectory.

Operational requirements on system (1)-(2) can be modelled by the following
canonical constraints:

gj(u) := Φj(x(T |u)) +

∫ T

0

Lj(t,x(t|u),u(t))dt

{
= 0

≥ 0
j = 1, . . . ,m, (4)

where Φj : Rn → R and Lj : R × Rn × Rr → R, j = 1, . . . ,m, are given functions.
Note that each canonical constraint may be of either equality or inequality type.

The canonical form (4) encapsulates many of the common constraints arising in
practice. For example, terminal state constraints of the form x(T ) = xf , where
xf is a desired terminal state, can be modelled by a canonical equality constraint
with Φj := |x(T ) − xf |2 and Lj := 0, where | · | denotes the Euclidean norm.
Furthermore, continuous inequality constraints of the form h(t,x(t)) ≥ 0, where
h : R × Rn → R is a given continuous function, can (in theory) be modelled by a
canonical equality constraint with Φj := 0 and Lj := min{h(t,x(t)), 0}2.1

Any admissible control u ∈ U satisfying the canonical constraints (4) is called a
feasible control. Let F denote the class of all such feasible controls.

Our goal is to find a feasible control that minimizes the following measure of
system cost:

g0(u) := Φ0(x(T |u)) +

∫ T

0

L0(t,x(t|u),u(t))dt, (5)

where Φ0 : Rn → R defines the terminal cost and L0 : R×Rn×Rr → R defines the
running cost. Equation (5) is called the cost function or objective function. Note
that the cost function is in the same form as the canonical constraints.

Our standard optimal control problem can now be stated as follows: Choose a
feasible control u ∈ F to minimize the cost function (5).

1This approach for handling continuous inequality constraints is known to cause numerical
difficulties. A superior approach is to use the constraint transcription method to approximate

h(t,x(t)) ≥ 0 by a canonical inequality constraint. See Section 5 for details.
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3. Control parameterization. The control parameterization method involves
approximating the control by a linear combination of basis functions, thereby yield-
ing an approximate optimization problem with a finite number of decision variables.
By exploiting special formulae for the cost and constraint gradients, this approxi-
mate problem can be solved using standard gradient-based optimization techniques.
In this paper, we focus on piecewise-constant basis functions, as these are the most
widely used in practice. Other basis functions can be handled similarly.

3.1. Piecewise-constant control approximation. With piecewise-constant ba-
sis functions, the control signal u is approximated as follows:

u(t) ≈ up(t) = ξk, t ∈ [τk−1, τk), k = 1, . . . , p, (6)

where p ≥ 1 is the number of control subintervals, [τk−1, τk) is the kth control subin-
terval, and ξk is the value of the control on the kth subinterval. This approximation
scheme is illustrated in Figure 1.

In (6), the constant control values ξk, k = 1, . . . , p, are decision variables to be
chosen optimally, while τk, k = 0, . . . , p, are pre-fixed knot points satisfying

0 = τ0 < τ1 < τ2 < · · · < τp−1 < τp = T.

For more accurate results, the knot points can also be taken as decision variables.
However, in this section, we focus solely on the traditional control parameterization
method in which the knot points are fixed. Variable knot points are discussed in
the next section.

The approximate piecewise-constant control can be written as follows:

up(t|ξ) :=

p∑
k=1

ξkχ[τk−1,τk)(t), t ∈ [0, T ], (7)

where

ξ = [(ξ1)>, . . . , (ξp)>]> ∈ Rpr (8)

and χ[τk−1,τk) : R→ R is the characteristic function defined by

χ[τk−1,τk)(t) :=

{
1, if t ∈ [τk−1, τk),

0, if t /∈ [τk−1, τk).

Note that up(·|ξ) switches value at times t = τk, k = 1, . . . , p− 1. These times are
called switching times.

Equation (7) does not define the value of up(·|ξ) at t = T . Although it is often
natural to define up(T |ξ) := up(T−|ξ), the value of up(T |ξ) is actually irrelevant,
as it does not affect the evolution of the state trajectory. In fact, if u and v
are two admissible controls such that u(t) = v(t) for almost all t ∈ [0, T ], then
x(t|u) = x(t|v) for all t ∈ [0, T ]. Thus, changing the control on a set of measure
zero does not change the state trajectory.

From (3), we obtain the following bound constraints on ξ:

ai ≤ ξki ≤ bi, k = 1, . . . , p, i = 1, . . . , r. (9)

Let Ξp denote the set of all ξ ∈ Rpr satisfying (8) and (9).
Substituting (7) into the dynamic system (1)-(2) yields

ẋ(t) = f(t,x(t), ξk), t ∈ [τk−1, τk), k = 1, . . . , p, (10)

x(0) = x0. (11)
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Figure 1. Piecewise-constant control approximation with equidis-
tant knot points (p = 10 subintervals).

Let xp(·|ξ) denote the solution of (10)-(11) corresponding to ξ ∈ Ξp. Then clearly,

xp(t|ξ) = x(t|up(·|ξ)), t ∈ [0, T ].

Under the control approximation (7), the canonical constraints (4) become

gpj (ξ) := Φj(x
p(T |ξ)) +

p∑
k=1

∫ τk

τk−1

Lj(t,xp(t|ξ), ξk)dt

{
= 0

≥ 0
j = 1, . . . ,m, (12)

where gpj (ξ) := gj(u
p(·|ξ)).

Let Γp denote the set of all ξ ∈ Ξp satisfying (12). Furthermore, let Fp denote
the set of all up(·|ξ) defined by (7) corresponding to elements of Γp. Then

ξ ∈ Γp ⇐⇒ up(·|ξ) ∈ Fp.

The cost function (5) becomes

gp0(ξ) := g0(up(·|ξ)) = Φ0(xp(T |ξ)) +

p∑
k=1

∫ τk

τk−1

L0(t,xp(t|ξ), ξk)dt. (13)

We now define the following approximate problem: Choose a vector ξ ∈ Γp to
minimize the cost function (13).

This approximate problem only involves a finite number of decision variables.
Thus, it should be much easier to solve than the original optimal control problem,
which involves determining the value of a function at an infinite number of time
points (every point in the interval [0, T ]). Two important questions that arise are:

(i) How can the approximate problem be solved?
(ii) Does the solution of the approximate problem converge in some sense to the

solution of the original problem?

We discuss these issues in the remainder of this section.

3.2. Gradient computation. The approximate problem defined above is a non-
linear optimization problem in which a finite number of decision variables need to
be chosen to minimize a cost function subject to a set of constraints. For this
approximate problem, the cost and constraint functions are implicit—rather than
explicit—functions of the decision vector ξ. Thus, it is not obvious how to determine
the gradients of the cost and constraint functions.
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Standard algorithms for nonlinear optimization (e.g. sequential quadratic pro-
gramming) exploit the cost and constraint gradients to generate search directions
that lead to profitable areas of the search space [50, 53]. To apply such algorithms
to the approximate problem, we need to be able to compute the partial derivatives
of gpj , j = 0, . . . ,m, at each ξ ∈ Rpr. There are two methods for doing this: the vari-

ational method (also called the sensitivity method) [26, 44, 47, 72] and the costate
method [19, 65]. We describe these methods below, starting with the variational
method.

Define the Kronecker delta function as follows:

δkl :=

{
1, if k = l,

0, otherwise.

In the variational method, we define the following variational system for each
k = 1, . . . , p and i = 1, . . . , r:

ψ̇ki(t) =
∂f(t,xp(t|ξ), ξl)

∂x
ψki(t) + δkl

∂f(t,xp(t|ξ), ξl)

∂ui
,

t ∈ [τl−1, τl), l = k, . . . , p,

(14)

with the initial condition

ψki(t) = 0, t ∈ [0, τk−1), (15)

where xp(·|ξ) is the solution of (10)-(11) corresponding to ξ.
Let ψki(·|ξ) denote the solution of (14)-(15). It can be shown (see [44, 47]) that

ψki(t|ξ) is the partial derivative of xp(t|ξ) with respect to the decision variable ξki :

∂xp(t|ξ)

∂ξki
= ψki(t|ξ), t ∈ [0, T ], k = 1, . . . , p, i = 1, . . . , r. (16)

This partial derivative is called the state variation with respect to ξki .
In view of (16), the cost and constraint gradients can be computed using the

chain rule of differentiation:

∂gpj (ξ)

∂ξki
=
∂Φj(x

p(T |ξ))

∂x

∂xp(T |ξ)

∂ξki
+

p∑
l=1

∫ τl

τl−1

∂Lj(t,xp(t|ξ), ξl)

∂x

∂xp(t|ξ)

∂ξki
dt

+

∫ τk

τk−1

∂Lj(t,xp(t|ξ), ξk)

∂ui
dt, j = 0, . . . ,m.

Thus,

∂gpj (ξ)

∂ξki
=
∂Φj(x

p(T |ξ))

∂x
ψki(T |ξ) +

p∑
l=1

∫ τl

τl−1

∂Lj(t,xp(t|ξ), ξl)

∂x
ψki(t|ξ)dt

+

∫ τk

τk−1

∂Lj(t,xp(t|ξ), ξk)

∂ui
dt, j = 0, . . . ,m.

(17)

Using these formulae, the cost and constraint gradients are computed in the same
way. This is the essence of the so-called unified computational approach advocated
in the monograph by Teo et al. [65]. Since the variational systems depend on the
solution of the state system, the state and variational systems can be combined to
form an enlarged system of differential equations. This enlarged system can then be
solved numerically to yield xp(·|ξ) and ψki(·|ξ), after which (17) can be evaluated.
This gradient computation method can be integrated with a nonlinear programming
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algorithm to solve the approximate problem numerically. More details are given in
[26, 44, 47, 72] and the references cited therein.

An alternative method for computing the cost and constraint gradients is the so-
called costate method. In the costate method, we define the Hamiltonian function
as follows:

Hj(t,x, ξ
l,λ) := Lj(t,x, ξl) + λ>f(t,x, ξl).

Consider the following costate system for each j = 0, . . . ,m:

λ̇j(t) = −
[
∂Hj(t,x

p(t|ξ), ξl,λj(t))

∂x

]>
, t ∈ [τl−1, τl), l = 1, . . . , p, (18)

with the terminal condition

λj(T ) =

[
∂Φj(x

p(T |ξ))

∂x

]>
. (19)

The solution of (18)-(19), denoted by λj(·|ξ), is called the costate.
The cost and constraint gradients can be expressed as follows:

∂gpj (ξ)

∂ξki
=

∫ τk

τk−1

∂Hj(t,x
p(t|ξ), ξk,λj(t|ξ))

∂ui
dt, j = 0, . . . ,m.

See Chapters 5 and 6 of [65] for a proof of this expression.
Note that the costate system (18)-(19) contains a terminal condition rather than

an initial condition. Hence, (18)-(19) must be integrated backwards in time, starting
from t = T . Consequently, unlike the variational system, the costate system cannot
be solved simultaneously with the state system—instead, the state system must
be solved first, after which the solution of the state system can be used to solve
the costate system. This makes the costate method slightly more complicated to
implement than the variational method. However, one advantage of the costate
method is that it only involves m + 1 auxiliary systems of differential equations
(one for the cost, one for each of the constraints), whereas the variational method
involves pr auxiliary systems (pr is normally much larger than m+ 1).

Both the variational method and the costate method will produce the same
results. By combining one of these gradient computation methods with a nonlinear
optimization algorithm, the approximate problem can be solved efficiently.

3.3. Convergence results. Convergence is a key issue for any numerical method
and control parameterization is no exception. In fact, one of the main virtues of the
control parameterization method is its strong convergence properties. We briefly
discuss these properties below.

Let ξ∗ ∈ Γp be a solution of the approximate optimization problem, where

ξ∗ = [(ξ1,∗)>, . . . , (ξp,∗)>]>.

Then a corresponding suboptimal control for the original optimal control problem
can be defined according to (7) as follows:

up(t|ξ∗) =

p∑
k=1

ξk,∗χ[τk−1,τk)(t).

An obvious question to ask is: how close is this suboptimal control to the true
optimal control? It is natural to expect that the quality of the approximation will
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improve as the number of subintervals increases, and this is indeed the case. More
specifically, it can be shown that

lim
p→∞

g0(up(·|ξ∗)) = g0(u∗), (20)

where u∗ is the true optimal control. This result assumes that the subintervals are
chosen so that all knot points for a particular value of p are also knot points for
p+ 1 (i.e. successive partitions of the time horizon are refinements of each other).

Equation (20) shows that the cost of the suboptimal control produced by control
parameterization converges to the true optimal cost as the number of subintervals
approaches infinity. This result is proved in Chapter 6 of [65]. It also proved in
Chapter 6 of [65] that if the sequence of suboptimal controls converges to a function
almost everywhere on [0, T ], then this function must be an optimal control. There
is no guarantee, however, that the sequence of suboptimal controls will converge.

The convergence results described above pertain to the general optimal control
problem with nonlinear dynamics and nonlinear cost and constraints. In the spe-
cial case when the dynamic system is linear, the cost function is convex, and the
state variables are subject only to linear terminal inequality constraints, stronger
convergence results are available. More specifically, it can be shown that in this
case, the sequence of suboptimal controls produced by control parameterization has
a subsequence converging to the true optimal control in the weak* topology. See
Chapter 7 of [65] for more details.

Based on the convergence results described above, practical problems are often
solved using the following iterative strategy:

1. Choose a small value for p and solve the approximate problem.
2. Increase p and re-solve the approximate problem, using the solution from the

previous value of p as the initial guess.
3. Keep repeating Step 2 until the difference in optimal cost values in successive

iterations is sufficiently small.

For the classical control parameterization scheme described in this section, the
number of subintervals required before the cost improvements start to taper off is
normally quite large. This is because the knot points are fixed, so there is not much
flexibility to modify the control. A better approach is to consider the knot points
as decision variables, along with the control heights. This will allow for adaptive
selection of optimal switching instants. This issue is discussed in Section 4.

3.4. Almost smooth controls. The piecewise-constant control (7) is convenient
for implementation in many practical applications. However, in some systems,
discontinuous control signals such as (7) should be avoided because abrupt changes
in the control signal could excite the system and cause instabilities. Furthermore,
in some systems, it may not even be possible to implement a discontinuous control
signal. For example, in the glider control problems in [36, 38], the control variable
is the glider’s angle of attack, which must be varied continuously.

Fortunately, it is easy to produce continuous control signals using the control
parameterization approach. This is done by introducing a new control variable v,
where v is the rate of change of the original control variable u:

u̇(t) = v(t), t ∈ [0, T ]. (21)

We now consider u as a state variable, with v the control function to be determined
optimally. Note that u will be continuous and piecewise-linear if v is approximated
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by a piecewise-constant function. The initial condition for u is

u(0) = ζ, (22)

where ζ is a vector of system parameters to be determined optimally. In practice,
bounds are often imposed on v to limit the rate of change of u:

ai ≤ vi(t) ≤ bi, t ∈ [0, T ], i = 1, . . . , r. (23)

The new optimal control problem with (21)-(23) can be solved using an extension
of the techniques described above. More details are given in Chapter 9 of [65].

4. Variable switching times. Suppose that the control switching times in (7)
are decision variables to be chosen optimally, along with the control values. Then
to solve the approximate problem using nonlinear optimization techniques, we need
a method for computing the partial derivatives of gpj , j = 0, . . . ,m, with respect to
the switching times. The gradient formulae in Section 3.2, however, only provide
the partial derivatives with respect to the control values.

It is widely claimed in the optimal control literature that the partial derivatives
of the cost and constraint functions with respect to variable switching times are
“discontinuous” (see [29, 30, 62, 78]) and “not effective for numerical implementa-
tion” (see [17, 33, 44, 49]). However, tracing the literature back, we cannot find
any mathematical justification for these claims. Despite this, it has become cus-
tomary to avoid dealing with variable switching times by invoking the so-called
time-scaling transformation (see Section 4.2), which maps variable switching times
to fixed points in a new time horizon. The resulting optimization problem can then
be solved using the computational techniques described in Section 3.

But why not optimize the switching times directly? After all, formulae for com-
puting the partial derivatives of the cost and constraint functions with respect to
the switching times do exist; see Chapter 5 of [65] for details. According to nu-
merous papers over the past two decades, these gradient formulae are difficult to
implement numerically. But there is no explanation in the literature as to why this
is the case. We now proceed to investigate this issue more closely.

4.1. Gradient computation. Since the switching times are variable, we now de-
note the solution of (10)-(11) by xp(·|ξ, τ ) (i.e. the state trajectory now depends
on both the control heights and the switching times).

For each k = 1, . . . , p− 1, consider the following variational system:

φ̇k(t) =
∂f(t,xp(t|ξ, τ ), ξl)

∂x
φk(t), t ∈ [τl−1, τl), l = k + 1, . . . , p, (24)

with jump condition

φk(τ+k ) = f(τk,x
p(τk|ξ, τ ), ξk)− f(τk,x

p(τk|ξ, τ ), ξk+1) (25)

and initial condition

φk(t) = 0, t ∈ [0, τk). (26)

In (25), we set τ+k = T if τk = T . Let φk(·|ξ, τ ) denote the unique right-continuous
solution of (24)-(26).

The following result gives the right partial derivative of xp(·|ξ, τ ) with respect
to τk. The proof of this result, which is given in Appendix A, is similar in essence
to the proofs of Theorem 2 in [12] and Theorem 1 in [47].



284 QUN LIN, RYAN LOXTON AND KOK LAY TEO

Theorem 4.1. Let k ∈ {1, . . . , p − 1} and suppose that τk < τk+1. Then for all
time points t 6= τk,

lim
ε→0+

xp(t|ξ, τ + εek)− xp(t|ξ, τ )

ε
= φk(t|ξ, τ ), (27)

where ek is the kth unit basis vector in Rp−1. Furthermore, for t = τk,

lim
ε→0+

xp(τk|ξ, τ + εek)− xp(τk|ξ, τ )

ε
= 0. (28)

Theorem 4.1 shows that the solution of the variational system (24)-(26) coincides
with the right partial derivative of xp(·|ξ, τ ) (with respect to τk) at all times t 6= τk.
At t = τk, there is a jump in the variational system and the corresponding right
partial derivative. Note that the condition τk < τk+1 in Theorem 4.1 is essential; if
τk = τk+1, then the perturbed switching time vector τ + εek will not be feasible for
the approximate problem because ε > 0. Thus, if τk = τk+1, then the right partial
derivative of xp(·|ξ, τ ) with respect to τk does not exist.

In our next result, we give the left partial derivative of xp(·|ξ, τ ) with respect
to τk. The proof of this result is given in Appendix B.

Theorem 4.2. Let k ∈ {1, . . . , p − 1} and suppose that τk−1 < τk. Then for all
time points t ∈ [0, T ],

lim
ε→0−

xp(t|ξ, τ + εek)− xp(t|ξ, τ )

ε
= φk(t|ξ, τ ), (29)

where ek is the kth unit basis vector in Rp−1.

Comparing Theorems 4.1 and 4.2, we see that the right partial derivative of
xp(τk|ξ, τ ) with respect to τk is the left limit of φk(·|ξ, τ ) at t = τk, and the left
partial derivative of xp(τk|ξ, τ ) with respect to τk is the right limit of φk(·|ξ, τ ) at
t = τk. The following result, which follows immediately from Theorems 4.1 and 4.2,
gives the state variation with respect to the switching times.

Theorem 4.3. Let k ∈ {1, . . . , p − 1} and suppose that τk−1 < τk < τk+1. Then
for all time points t 6= τk,

∂xp(t|ξ, τ )

∂τk
= lim
ε→0

xp(t|ξ, τ + εek)− xp(t|ξ, τ )

ε
= φk(t|ξ, τ ).

Unlike the variational system for the control values, the variational system for
the switching times involves a jump condition at t = τk. Consequently, the left and
right partial derivatives differ at t = τk, and thus the corresponding state variation
does not exist. This is why t = τk is deliberately excluded from Theorem 4.3.

Note that the technical caveats in Theorem 4.3 (t 6= τk and τk−1 < τk < τk+1)
are not needed for the state variation with respect to the control values. Thus,
optimizing the switching times is much more difficult than optimizing the control
values. This is one reason for the popularity of the time-scaling transformation,
which allows one to circumvent the difficulties caused by variable switching times
(see Section 4.2).

Using Theorem 4.3, we can derive the partial derivatives of the cost and constraint
functions with respect to the switching times (assuming that all switching times are
distinct). First, recall that the cost and constraint functions are defined by

gpj (ξ, τ ) := Φj(x
p(T |ξ, τ )) +

p∑
l=1

∫ τl

τl−1

Lj(t,xp(t|ξ, τ ), ξl)dt, j = 0, . . . ,m.
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Using the chain rule of differentiation, we obtain

∂

∂τk

{
Φj(x

p(T |ξ, τ ))
}

=
∂Φj(x

p(T |ξ, τ ))

∂x

∂xp(T |ξ, τ )

∂τk
. (30)

Furthermore, using the Leibniz rule for differentiating integrals, we obtain

∂

∂τk

{ p∑
l=1

∫ τl

τl−1

Lj(t,xp(t|ξ, τ ), ξl)dt

}
= Lj(τk,xp(τk|ξ, τ ), ξk)− Lj(τk,xp(τk|ξ, τ ), ξk+1) (31)

+

p∑
l=1

∫ τl

τl−1

∂Lj(t,xp(t|ξ, τ ), ξl)

∂x

∂xp(t|ξ, τ )

∂τk
dt.

Applying the Leibniz rule to interchange the order of differentiation and integration
is valid here because the partial derivative of xp(·|ξ, τ ) with respect to τk exists at
all points in the interior of the interval [τl−1, τl]. Recall that the Leibniz rule does
not require differentiability at the end points.

Combining (30) and (31) with Theorem 4.3 yields the following gradient formulae:

∂gpj (ξ, τ )

∂τk
=
∂Φj(x

p(T |ξ, τ ))

∂x
φk(T |ξ, τ )

+ Lj(τk,xp(τk|ξ, τ ), ξk)− Lj(τk,xp(τk|ξ, τ ), ξk+1)

+

p∑
l=1

∫ τl

τl−1

∂Lj(t,xp(t|ξ, τ ), ξl)

∂x
φk(t|ξ, τ )dt.

(32)

These gradient formulae are based on the variational system. In Chapter 5 of [65],
alternative gradient formulae are derived using the costate method. The derivation
in [65] is rather complex and requires introducing generalized functions. We will
give a simpler derivation.

As in Section 3.2, we consider the following costate system for each j = 0, . . . ,m:

λ̇j(t) = −
[
∂Hj(t,x

p(t|ξ, τ ), ξl,λj(t))

∂x

]>
, t ∈ [τl−1, τl), l = 1, . . . , p, (33)

with the terminal condition

λj(T ) =

[
∂Φj(x

p(T |ξ, τ ))

∂x

]>
, (34)

where Hj is the Hamiltonian defined by

Hj(t,x, ξ
l,λ) := Lj(t,x, ξl) + λ>f(t,x, ξl).

Let λj(·|ξ, τ ) denote the solution of (33)-(34). Gradient formulae for the cost and
constraints with respect to the switching times are derived below.

Theorem 4.4. Let k ∈ {1, . . . , p− 1} and suppose that τk−1 < τk < τk+1. Then

∂gpj (ξ, τ )

∂τk
= Hj(τk,x

p(τk|ξ, τ ), ξk,λj(τk|ξ, τ ))

−Hj(τk,x
p(τk|ξ, τ ), ξk+1,λj(τk|ξ, τ )).

(35)
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Proof. For simplicity, we write xp instead of xp(·|ξ, τ ). Let v : [0, T ]→ Rn be any
absolutely continuous function. Then we can write gpj as follows:

gpj (ξ, τ ) = Φj(x
p(T )) +

p∑
l=1

∫ τl

τl−1

Lj(t,xp(t), ξl)dt

= Φj(x
p(T )) +

p∑
l=1

∫ τl

τl−1

Hj(t,x
p(t), ξl,v(t))dt−

p∑
l=1

∫ τl

τl−1

v(t)>ẋp(t)dt.

Using integration by parts,

gpj (ξ, τ ) = Φj(x
p(T )) +

p∑
l=1

∫ τl

τl−1

Hj(t,x
p(t), ξl,v(t))dt

−
p∑
l=1

{
v(τl)

>xp(τl)− v(τl−1)>xp(τl−1)−
∫ τl

τl−1

v̇(t)>xp(t)dt

}
= Φj(x

p(T ))− v(T )>xp(T ) + v(0)>xp(0)

+

p∑
l=1

∫ τl

τl−1

{
Hj(t,x

p(t), ξl,v(t)) + v̇(t)>xp(t)
}
dt.

Using the Leibniz rule, this equation can be differentiated with respect to τk to give

∂gpj (ξ, τ )

∂τk
=
∂Φj(x

p(T ))

∂x

∂xp(T )

∂τk
− v(T )>

∂xp(T )

∂τk

+Hj(τk,x
p(τk), ξk,v(τk))−Hj(τk,x

p(τk), ξk+1,v(τk))

+

p∑
l=1

∫ τl

τl−1

{
∂Hj(t,x

p(t), ξl,v(t))

∂x

∂xp(t)

∂τk
+ v̇(t)>

∂xp(t)

∂τk

}
dt.

Recall that v : [0, T ]→ Rn was chosen arbitrarily. Setting v = λj(·|ξ, τ ), and then
applying equations (33)-(34), we obtain

∂gpj (ξ, τ )

∂τk
= Hj(τk,x

p(τk), ξk,λj(τk|ξ, τ ))−Hj(τk,x
p(τk), ξk+1,λj(τk|ξ, τ )),

as required.

Equations (32) and (35) give the partial derivatives of the canonical functions
gpj , j = 0, . . . ,m, with respect to the switching times. Contrary to what is widely
claimed in the literature, these partial derivatives are continuous functions: since
the state trajectory and the solutions of the variational and costate systems depend
continuously on ξ and τ , the derivative formulae in (32) and (35) also depend
continuously on ξ and τ . In principle, (32) and (35) can be used in conjunction with
a gradient-based optimization method to optimize the switching times. However,
there are several difficulties with this approach:

(i) The variational system for the switching times contains a jump condition;
(ii) The partial derivatives of the canonical functions with respect to τk only exist

when the switching times are distinct;
(iii) It is cumbersome to integrate the state and variational/costate systems nu-

merically when the switching times are variable, especially when two or more
switching times are close together.
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For these reasons, the gradient formulae in (32) and (35) are rarely implemented in
practice. Instead, the time-scaling transformation is used to transform the problem
with variable switching times into an equivalent problem with fixed switching times.
This is discussed in the next section.

4.2. The time-scaling transformation. One way of circumventing the difficul-
ties caused by variable switching times is to apply the time-scaling transformation.
The time-scaling transformation works by mapping the variable switching times to
fixed points in a new time horizon, thus yielding a new optimization problem in
which the switching times are fixed. This new problem can then be solved readily
using the gradient-based optimization techniques described in Section 3.

The time-scaling transformation—originally called the control parameterization
enhancing transform (CPET)—was first introduced in [29] to determine optimal
switching instants for time-optimal controls. It has since been applied to many
other areas, such as mixed integer programming [27], impulsive systems [37], and
singular optimal control [60].

To apply the time-scaling transformation, we first introduce a new time variable
s ∈ [0, p], where p is the number of control subintervals. Next, we relate the new
time variable s ∈ [0, p] to the original time variable t ∈ [0, T ] through the following
boundary value problem:

dt(s)

ds
= v(s), s ∈ [0, p], (36)

t(0) = 0, (37)

t(p) = T, (38)

where v : [0, p] → R is a new piecewise-constant control called the time-scaling
control. The time-scaling control is defined by

v(s) :=

p∑
k=1

θkχ[k−1,k)(s), s ∈ [0, p],

where χ[k−1,k) : R→ R is the characteristic function for the interval [k − 1, k) and

θk := τk − τk−1, k = 1, . . . , p.

Thus, the heights of the time-scaling control are the durations of the control subin-
tervals in the original time horizon.

It is easy to see that (36)-(38) defines t as a continuous and non-decreasing
piecewise-linear function of s. In fact, integrating (36)-(38) yields

t(s) =

∫ s

0

v(η)dη =

bsc∑
l=1

θl + θbsc+1(s− bsc), s ∈ [0, p). (39)

In some references (e.g. [37, 38, 45, 49]), equation (39) is used to define the time-
scaling transformation directly instead of (36)-(38).

From (38) and (39), we obtain

t(k) =

k∑
l=1

θl = τk, k = 0, . . . , p.

This shows that the time-scaling transformation defined by (36)-(38) maps s = k
to the kth switching time t = τk. An example illustrating the relationship between
s and t is given in Figure 2.
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s

v(s)
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(a) Time-scaling control

s

t(s)

1

3
2

3

0 1 2 3 4 5

(b) t as a function of s

Figure 2. The time-scaling transformation for θ1 = 1, θ2 = 0,
θ3 = 1

2 , θ4 = 3
2 , and θ5 = 0.

Let
θ := [θ1, . . . , θp]

>.

Clearly, the vector θ ∈ Rp must satisfy the following non-negativity constraints:

θk ≥ 0, k = 1, . . . , p. (40)

Applying the transformation t = t(s), where t(s) is defined by (36)-(38), we obtain
a new state vector defined as follows:

x̃p(s) := xp(t(s)), s ∈ [0, p].

Thus, applying (36)-(38) to the dynamic system (10)-(11) yields

˙̃xp(s) = θkf(t(s), x̃p(s), ξk), s ∈ [k − 1, k), k = 1, . . . , p, (41)

x̃p(0) = x0, (42)

where the overhead dot now denotes differentiation with respect to s. Let x̃p(·|ξ,θ)
denote the solution of (41)-(42) corresponding to ξ ∈ Rpr and θ ∈ Rp. Note that
the switching times in (41)-(42) occur at the fixed locations s = 1, 2, . . . , p− 1.

The bound constraints on ξ ∈ Rpr remain the same:

ai ≤ ξki ≤ bi, k = 1, . . . , p, i = 1, . . . , r. (43)

However, under the time-scaling transformation (36)-(38), the canonical constraints
(12) become

Φj(x̃
p(p|ξ,θ)) +

p∑
k=1

∫ k

k−1
θkLj(t(s), x̃p(s|ξ,θ), ξk)ds

{
= 0

≥ 0
j = 1, . . . ,m. (44)

Similarly, the cost function (13) becomes

g̃p0(ξ,θ) := Φ0(x̃p(p|ξ,θ)) +

p∑
k=1

∫ k

k−1
θkL0(t(s), x̃p(s|ξ,θ), ξk)ds. (45)

The transformed problem is: Given the dynamic systems (36)-(37) and (41)-(42),
choose ξ ∈ Rpr and θ ∈ Rp to minimize (45) subject to the constraints (38), (40),
(43), and (44). In this problem, the switching times τk, k = 1, . . . , p− 1, have been
replaced by θ, a normal decision vector similar to ξ. Furthermore, the original time
variable t is now considered a state variable.
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The transformed problem defined above is equivalent to the original problem. In
fact, if (ξ∗,θ∗) is a solution of the transformed problem, then the optimal switching
times for the original problem are

τ∗k =

k∑
l=1

θ∗l , k = 1, . . . , p− 1.

The corresponding suboptimal control is

up(t) =

p∑
k=1

ξk,∗χ[τ∗
k−1,τ

∗
k )

(t).

Since it only involves fixed switching times, the transformed problem can be solved
readily using the techniques described in Section 3. In practice, this approach is
much more effective than optimizing the switching times directly. For more details,
see references [44, 49, 56, 68].

5. Continuous inequality constraints. Many practical optimal control prob-
lems involve continuous inequality constraints of the following form:

h(t,x(t)) ≥ 0, t ∈ [0, T ], (46)

where h : R × Rn → R is a given continuously differentiable function. Such con-
straints are also called path constraints or functional inequality constraints in the
literature. The main difficulty with these types of constraints is that they restrict
the state variables at every point in the time horizon—an infinite number of time
points.

Continuous inequality constraints in the form of (46) arise in many applications,
including robotics [18], underwater vehicles [7], and chemical engineering [82]. Since
h is a continuous function, (46) can be transformed into the following canonical
equality constraint: ∫ T

0

min{h(t,x(t)), 0}dt = 0. (47)

At first glance, this transformation looks extremely powerful: it converts the infinite
number of constraints defined by (46) into just one constraint. Unfortunately, since
the function min{·, 0} is non-differentiable at the origin, (47) is a non-smooth con-
straint. Thus, gradient-based optimization methods such as sequential quadratic
programming will typically struggle to handle this constraint.

An alternative integral formulation for (46) is given by∫ T

0

min{h(t,x(t)), 0}2dt = 0. (48)

This transformation was first suggested in [63]. Although (48) is differentiable, its
gradient with respect to the control values is zero at all feasible points. Thus, (48)
does not satisfy the linear independence constraint qualification—a fundamental
condition required for the convergence of nonlinear programming algorithms. Thus,
standard nonlinear programming algorithms cannot handle (48) effectively.

Given the limitations of (47) and (48), these transformations are rarely used in
practice. Instead, two popular approximation methods have been developed: the
constraint transcription method and the exact penalty method. We now proceed to
discuss these two methods.
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−ε ε

Figure 3. The smoothing function ϕε.

5.1. Constraint transcription: Traditional approach. The constraint tran-
scription method is based on the following smooth approximation of the function
min{·, 0}:

min{η, 0} ≈ ϕε(η) :=


η, if η < −ε,
−(η − ε)2/4ε, if −ε ≤ η ≤ ε,
0, otherwise,

where ε > 0 is an adjustable parameter. The smoothing function ϕε is illustrated in
Figure 3. It is easy to verify that ϕε is continuously differentiable and non-positive.

Substituting min{η, 0} ≈ ϕε(η) into the left-hand side of (47) gives the following
approximate constraint: ∫ T

0

ϕε(h(t,x(t)))dt = 0. (49)

Like (48), this constraint does not satisfy the linear independence constraint quali-
fication. Thus, it is not suitable for numerical computation.

Since ϕε is non-positive, we can approximate (49) by

− γ ≤
∫ T

0

ϕε(h(t,x(t)))dt, (50)

where γ > 0 is an adjustable parameter. Hence, the original continuous inequality
constraint (46) is approximated by the canonical inequality constraint (50). This is
the main idea of the traditional constraint transcription method.

Replacing (46) with (50) yields a standard optimal control problem that can be
solved readily using control parameterization. It can be shown (see [22, 65, 66])
that for each ε > 0, there exists a corresponding γ(ε) > 0 such that whenever
0 < γ < γ(ε), constraint (50) implies constraint (46). Furthermore, the optimal
cost of the approximate problem (obtained by replacing (46) with (50)) converges
to the true optimal cost as ε → 0. Thus, when ε and γ are sufficiently small, (50)
is a good approximation of (46).

5.2. Constraint transcription: Penalty approach. An alternative constraint
transcription approach is described in references [49, 54, 71]. This approach involves
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appending the right-hand side of (50) to the cost function as a penalty term. This
gives the modified cost function

ĝ0(u) := g0(u)− γ
∫ T

0

ϕε(h(t,x(t)))dt, (51)

where γ > 0 is a penalty parameter and g0(u) is the original cost function. It can
be shown that for each ε > 0, there exists a corresponding γ(ε) > 0 such that for all
γ > γ(ε), any minimizing control of (51) satisfies the original continuous inequality
constraints (46). Moreover, the cost of the minimizing control of (51) converges to
the true optimal cost as ε→ 0.

Both versions of the constraint transcription method have similar convergence
properties. The traditional approach, in which the continuous inequality constraints
are approximated by canonical constraints, was proposed first in the early 1990s.
It was originally designed to solve semi-infinite programming problems in [22], and
then later applied to optimal control in [65]. The penalty approach was first pro-
posed in [71], a few years after the introduction of the traditional approach. One
advantage of the penalty approach is that unlike the traditional approach, it does
not require any additional costate systems (in the traditional approach, each approx-
imate canonical constraint requires a separate costate system). Thus, intuitively,
the penalty approach should be faster than the traditional approach. However, this
has yet to be demonstrated conclusively in practice.

5.3. Exact penalty method. For many years, constraint transcription was the
method of choice for handling path-constrained optimal control problems. Recently,
however, a rival method has emerged. This new method, called the exact penalty
method, is described in [34].

In the exact penalty method, we define

∆(u, ε) :=

∫ T

0

max{−h(t,x(t))− εω, 0}2dt,

where ε > 0 is a new decision variable and ω ∈ (0, 1) is a fixed constant. Note that
∆(u, ε) = 0 if and only if

h(t,x(t)) ≥ −εω, t ∈ [0, T ].

Thus, when ε is small, ∆(u, ε) is an approximate measure of the violation of the
continuous inequality constraint (46).

Now, consider the following penalty function:

ĝ0(u, ε) := g0(u) + ε−α∆(u, ε) + γεβ , (52)

where γ > 0 is a penalty parameter and α and β are fixed constants.
In the penalty function (52), the last term γεβ is designed to penalize large

values of ε, while the middle term ε−α∆(u, ε) is designed to penalize violations in
the continuous inequality constraint (46). When γ is large, minimizing (52) forces ε
to be small, which in turn causes ε−α to become large, and thus constraint violations
are penalized very severely. Hence, minimizing the penalty function for large values
of γ will lead to feasible points satisfying constraint (46).

Under some mild technical conditions, it can be shown that the penalty function
(52) is “exact” in the sense that when γ is sufficiently large, any local minimizer of
the penalty function is also a local minimizer of the original optimal control prob-
lem. This is a strong convergence property that is not shared by the constraint
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transcription method. Indeed, the convergence results for the constraint transcrip-
tion method require global optimal solutions; there is no guarantee that a local
solution of the approximate problem converges to a local solution of the original
problem. Note that the approximate problems are usually non-convex, and thus
finding the global solution is a difficult task in practice. Despite this, the constraint
transcription method has proven to be very effective at solving optimal control
problems with continuous inequality constraints.

6. Non-standard optimal control problems. Although the standard optimal
control problem described in Section 2 is quite general, there are many practical
problems that do not fit into this standard form. One of the main virtues of control
parameterization is its versatility at handling such non-standard optimal control
problems. The purpose of this section is to describe how several important classes
of non-standard optimal control problems can be tackled using the control param-
eterization approach.

6.1. System parameters. The control function u is a time-varying decision vari-
able that influences the evolution of the state variables through the governing dy-
namic system. In some optimal control problems, the dynamic system also involves
time-invariant decision variables, in addition to the time-varying control function.
Such time-invariant decision variables are called system parameters.

For example, consider the following dynamic system:

ẋ(t) = f(t,x(t),u(t), ζ), t ∈ [0, T ],

x(0) = x0(ζ).

Here, ζ ∈ Rq is a vector of time-invariant system parameters and x0 : Rq → Rn is a
given function defining the initial state in terms of ζ. Note that ζ can be viewed as
a piecewise-constant control in the form of (7) with p = 1 (i.e. a piecewise-constant
control with only one subinterval). Thus, the control parameterization technique
can be easily extended to solve optimal control problems with system parameters.
See Chapter 5 of [65] for details.

6.2. Characteristic times. In previous sections, we considered the following can-
onical form for the cost and constraint functions:

gj(u) := Φj(x(T )) +

∫ T

0

Lj(t,x(t),u(t))dt. (53)

A more general canonical form is

gj(u) := Φj(x(τj)) +

∫ τj

0

Lj(t,x(t),u(t))dt, (54)

where τj ∈ [0, T ] is a given constant called the characteristic time. This general-
ization is useful for modelling interior point constraints of the form x(τj) = γj ,
where γj is the desired state at time t = τj . The gradient formulae for (53) given
in Section 3.2 can be easily adapted to suit (54); see Chapter 6 of [65] for details.

In some applications—for example, cancer chemotherapy [44, 51]—the constraints
depend on the state at two or more discrete time points. This motivates the follow-
ing generalization of (53) and (54):

gj(u) := Φj(x(τ1), . . . ,x(τq)) +

∫ T

0

Lj(t,x(t),u(t))dt. (55)
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Here, the canonical function involves multiple characteristic times, not just one.
As shown in [44], the variational method can be readily extended to derive gra-

dient formulae for (55). The costate method can also be used to derive gradient
formulae for (55); see [51] for details. It is interesting to note that the costate sys-
tem for (55) involves instantaneous jumps at the characteristic times. Such jumps
are not present in the variational system.

References [44, 70] consider the situation when the characteristic times are deci-
sion variables instead of fixed constants. In this case, the time-scaling transforma-
tion can be used to map the characteristic times to fixed time points. The resulting
transformed problem can then be solved using the methods in [51].

6.3. Discrete-valued controls. In a standard optimal control problem, the con-
trol variables are subject to the following bound constraints:

ai ≤ ui(t) ≤ bi, t ∈ [0, T ], i = 1, . . . , r.

That is, the ith control variable ui is allowed to assume any value within the convex
range [ai, bi]. In many applications, however, the control cannot assume values in a
convex range, but is instead restricted to a finite set of discrete values. In this case,
we have the following non-convex control constraints:

u(t) ∈ {u1, . . . ,uq}, t ∈ [0, T ], (56)

where ui ∈ Rr, i = 1, . . . , q, are given vectors. A control function satisfying (56) is
called a discrete-valued control.

Discrete-valued controls arise in a wide range of important applications, including
diesel-electric locomotives [20], submarines [8, 55], hybrid power systems [59, 77],
switching amplifiers [61], sensor scheduling [28, 76], and chromatography [9]. A
discrete-valued control is completely determined by:

(i) the order in which it assumes the different values in {u1, . . . ,uq} (the so-called
switching sequence); and

(ii) the times at which it switches from one value to another (the so-called switch-
ing times).

Thus, the problem of determining an optimal discrete-valued control amounts to
determining an optimal switching sequence and an optimal set of switching times.
Since the switching sequence is a discrete optimization variable, this problem can
be viewed as a mixed-integer optimization problem.

The first general method for solving optimal control problems with discrete-
valued controls was proposed in [30]. This method is based on a heuristic proce-
dure that converts the optimal control problem into a switching time optimization
problem. The time-scaling transformation can then be applied to solve the resulting
switching time optimization problem. The advantage of this approach is that it
converts an optimal control problem with discrete variables into an easier problem
that only involves continuous optimization variables. The disadvantage, however, is
that this approach is only heuristic—the switching time optimization problem ob-
tained via the transformation is not quite equivalent to the original optimal control
problem. New transformation procedures that do preserve mathematical equiva-
lence have recently been proposed in [79, 81]. These new approaches are based on
discrete optimization techniques.
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6.4. Switched impulsive systems. A general switched impulsive system can be
described as follows:

ẋ(t) = f i(t,x(t),u(t)), t ∈ [ti−1, ti), i = 1, . . . ,m, (57)

with jump conditions

x(t+i ) = Ψi(x(t−i )), i = 1, . . . ,m, (58)

and initial condition

x(0) = x0. (59)

Here, each function f i : R × Rn × Rr → Rn describes the dynamic behaviour
of a subsystem or mode. Furthermore, the function Ψi : Rn → Rn defines an
instantaneous jump in the system state at the switching time t = ti.

The switched impulsive system (57)-(59) operates as follows. It starts in state
x0 at time t = 0 and runs smoothly according to equation (57) with i = 1 until
time t = t1. At t = t1, the state experiences an instantaneous jump from x(t−1 ) to
x(t+1 ) according to equation (58) with i = 1. Then, starting from x(t+1 ), the system
again runs smoothly until t = t2, at which time it experiences another instantaneous
jump, and so on until the end of the time horizon.

Switched impulsive systems have many applications in areas such as switching
power converters [48], shrimp harvesting [24, 80], robotics [6], and 1-3 propanediol
production [40]. When f i := f for each i = 1, . . . ,m (i.e. no switch in the dy-
namics), system (57)-(59) is called an impulsive system. When Ψi := x(t−i ) (i.e. no
jumps), system (57)-(59) is called a switched system.

According to equation (58), the state jump at t = ti depends entirely on the
state immediately before the ith switch. In some systems, however, the magnitude
of the state jump can be controlled through a set of system parameters. Thus, a
more general state jump condition is

x(t+i ) = Ψi(x(t−i ), ζ), i = 1, . . . ,m,

where ζ ∈ Rq is a vector of system parameters. In optimal control problems involv-
ing switched impulsive systems, the switching times are usually decision variables to
be optimized, along with the control function and/or system parameters. To solve
such problems, the control function can be approximated using the control param-
eterization method, and the optimal switching times can be determined using the
time-scaling transformation. See [33, 39, 41, 45, 58, 78] for details.

In system (57)-(59), the sequence in which the different subsystems operate—the
so-called switching sequence—is fixed and known:

f1 −→ f2 −→ f3 −→ · · · −→ fm.

In some situations, however, the switching sequence is actually a discrete optimiza-
tion variable. In this case, the system dynamics can be described by

ẋ(t) = fv(t)(t,x(t),u(t)), t ∈ [0, T ], (60)

where v : [0, T ] → {1, . . . ,m} is a discrete-valued control representing the current
mode of the system. The technique developed in [81] for solving optimal discrete-
valued control problems can be applied to determine the optimal switching sequence
and the optimal switching times. This technique is based on the time-scaling trans-
formation and the exact penalty method.
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6.5. Delay systems. In some systems, the rate of change of the state depends not
only on the current state and current control, but also on the state and control at
previous times. Such systems are called delay systems. A general delay system can
be modelled as follows:

ẋ(t) = f(t,x(t),x(t− α),u(t),u(t− β)), t ∈ [0, T ],

x(t) = γ(t), t ≤ 0,

where α is called the state-delay, β is called the input-delay, and γ : R → Rn is a
given initial function defining the state at negative times. Note that our previous
initial condition x(0) = x0 is not sufficient here. This is because the dynamic
equations for the interval [0, α] depend on the state at times t ∈ [−α, 0].

Various extensions of the control parameterization method have been developed
for delay systems; see references [13, 25, 32, 65, 73, 74] for details. The methods
discussed in these references do not allow the control switching times to be variable.
In fact, variable switching times pose major problems for delay systems because the
time-scaling transformation does not work in this case. To see why, consider the
following simple state-delay system:

ẋ(t) = f(x(t),x(t− α),u(t)), t ∈ [0, T ],

x(t) = γ(t), t ≤ 0.

By using the piecewise-constant approximation scheme u(t) ≈ ξk, t ∈ [τk−1, τk), we
obtain

ẋ(t) = f(x(t),x(t− α), ξk), t ∈ [τk−1, τk), k = 1, . . . , p,

x(t) = γ(t), t ≤ 0.

As in Section 4.2, we define the time-scaling transformation through the differential
equation

dt(s)

ds
= v(s), t(0) = 0, t(p) = T, (61)

where s ∈ [0, p] is the new time variable and v : [0, p] → [0,∞) is the time-scaling
control. Recall that this transformation maps s = k to the kth switching time.
Defining x̃(s) = x(t(s)), it follows from (61) and the chain rule of differentiation
that

˙̃x(s) =
d

ds

{
x(t(s))

}
= v(s)f(x(t(s)),x(t(s)− α), ξk), s ∈ [k − 1, k),

and thus
˙̃x(s) = v(s)f(x̃(s),x(t(s)− α), ξk), s ∈ [k − 1, k).

It is not possible to express the delay argument x(t(s) − α) in terms of x̃. Thus,
the new system obtained by applying the time-scaling transformation is coupled
with the original system. Consequently, applying the time-scaling transformation is
not beneficial for delay systems—in fact, the time-scaling transformation actually
complicates the problem. One possible remedy is to use the approach proposed
in [75], whereby the delay system is transformed into a large system of ordinary
differential equations, and then the time-scaling transformation is applied to this
new system. The disadvantage of this approach is that the new system is large and
contains many boundary conditions, making it difficult to solve numerically.

In practice, the time-delays α and β are often unknown and must first be esti-
mated before control parameterization is applied. References [10, 11, 46] consider
the problem of choosing the delays to minimize the deviation between predicted
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and observed system output. This problem is a time-delay optimal control problem
in which the control variables are the delays themselves. Gradient formulae for the
cost function with respect to the time-delays are derived in [10, 11, 46].

6.6. Stopping constraints. In some optimal control problems (e.g. the glider con-
trol problems in [64, 69]), the governing dynamic system terminates only when a
certain stopping constraint is satisfied. This stopping constraint is usually of the
following form:

Ψ(x(T )) = 0, (62)

where T is the terminal time and Ψ : Rn → R is a given function. For example,
consider the time-optimal control problem in which the aim is to drive the system
from the initial state x0 to a target state xf in minimum time. In this case, the
stopping constraint is ∣∣x(T )− xf

∣∣2 = 0. (63)

For a system governed by stopping constraint (62), the terminal time T is defined
as the first time at which (62) is satisfied. Mathematically,

T = T (u) = inf{ t > 0 : Ψ(x(t|u)) = 0 },

where x(·|u) denotes the state trajectory corresponding to the control signal u.
Hence, the terminal time can be viewed as an implicit function of the control:
changing the control changes the state trajectory, which in turn changes the time
at which the state trajectory satisfies the stopping constraint.

At first glance, it may appear that (62) can be formulated as a canonical equality
constraint with Φj := Ψ and Lj := 0. However, this is not sufficient to ensure that
T is the first time at which (62) is satisfied. Consequently, special techniques are
needed to handle the stopping constraint. The control parameterization method
has been successfully adapted to solve optimal control problems with stopping con-
straints; see [23, 36, 38, 64, 69] for details.

6.7. Penalizing control changes. The standard optimal control problem formu-
lated in Section 2 does not consider the cost of changing the control input. Thus,
the theoretical optimal control may in fact be highly volatile, making it difficult and
expensive (if not impossible) to implement in practice. Thus, it is often desirable
in practical problems to impose a penalty on control changes.

To measure the volatility of the control signal, we define the total variation of ui
by

T∨
0

ui := sup

m∑
j=1

∣∣ui(tj)− ui(tj−1)
∣∣,

where the supremum is taken over all finite partitions {tj}mj=0 ⊂ [0, T ] satisfying

0 = t0 < t1 < · · · < tm−1 < tm = T.

The total variation of the vector-valued control signal u : [0, T ]→ Rr is defined by

T∨
0

u :=

r∑
i=1

T∨
0

ui.

Clearly, the total variation is zero if u is constant.
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Consider the following modified cost function:

ĝ0(u) := Φ0(x(T )) +

∫ T

0

L0(t,x(t),u(t))dt+ α

T∨
0

u, (64)

where α ≥ 0 is a given weight. This modified cost function considers both system
performance and control volatility. Theoretical conditions for minimizing cost func-
tions in the form of (64) are given in [5, 52]. To solve such problems numerically,
the control parameterization method can be adapted (see [42, 43, 67]).

7. Conclusion. This paper has demonstrated the power of the control parame-
terization approach in solving nonlinear optimal control problems. The main idea
of control parameterization is simple and intuitive: it involves approximating the
control by a piecewise-constant function to yield a finite-dimensional approximation
of the optimal control problem. This approximate problem is essentially a nonlinear
programming problem in which the cost function’s gradient depends on the solu-
tion of an auxiliary system of differential equations (either the variational system or
the costate system; see Section 3). Standard gradient-based optimization methods
such as sequential quadratic programming can be applied to solve the approximate
problem. Various convergence results are available to show that the accuracy of
the approximation improves as the discretization of the time horizon is refined. As
shown in Section 6, this approach is very flexible and can be applied to solve a wide
range of non-standard optimal control problems.

Our hope is that this survey paper will stimulate further interest in the area of
optimal control computation. There are still many possibilities for future research.
For the interested reader, we give some suggestions below.

• The control parameterization method is mainly used to compute open loop
controls in which the control is a function of time. However, often the control is
required to be expressed as a function of the state—a so-called feedback control.
Feedback controls are well-known to be more robust than open loop controls.
Recent work has explored the possibility of using the control parameterization
technique to determine optimal feedback controls; see [35, 47]. This research
direction should be pursued in future work.

• The approximate problem obtained through control parameterization is gen-
erally solved using gradient-based optimization techniques. Such techniques
only converge to a local optimal solution, which may or may not be globally
optimal. Recently, the idea of combining gradient-based optimization meth-
ods with global optimization methods has been explored to yield convergence
to a global solution. See [77, 78] for some relevant work in this area.

• In Section 6.4, we discussed two types of switched impulsive systems: one in
which the switching sequence is fixed, and the other in which the switching
sequence is a decision variable. There is yet another type of switched sys-
tem in which the switching law is governed by a state-dependent switching
criterion. Such systems arise in robotics [6] and voice-coil motors [14]. The
state trajectory for these switched systems can be generated numerically us-
ing a technique based on the time-scaling transformation [31]. However, this
technique is only designed to solve the system, not perform any optimiza-
tion. Extending the control parameterization method to this class of switched
systems is an important topic for future research.
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• As mentioned in Section 6.5, delay systems pose difficulties for the time-scaling
transformation. It is currently unknown whether the time-scaling transforma-
tion can be suitably modified to handle delay systems. More work is needed
to provide answers to this question.

• For time-delay systems, the control parameterization method has mainly been
used in the case when the delays are fixed and known. Some systems, however,
involve delays that are functions of the state and/or control variables. Ex-
amples include crushing processes [57], mixing tanks with recycle loops [16],
and irrigation canals [4]. Optimal control computation for such delay systems
promises to be a fruitful area of research.

Acknowledgements. The second author acknowledges support from the National
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Research Fellowship program (NSFC grant number 11350110208).

Appendix A. Proof of Theorem 4.1. We prove the theorem in 6 steps.

Step 1: Preliminaries. For notational simplicity, we write xp(·) instead of xp(·|ξ, τ )
and xp,ε(·) instead of xp(·|ξ, τ+εek). This will not cause confusion because ξ and τ
are fixed throughout this proof.

Let t ∈ [0, T ] be a fixed time point. Furthermore, let up denote the piecewise-
constant control corresponding to (ξ, τ ), and let up,ε denote the piecewise-constant
control corresponding to (ξ, τ + εek).

Let V denote the control restraint set defined by

V := {v ∈ Rr : ai ≤ vi ≤ bi, i = 1, . . . , r }.
Since the control range is contained in V , up,ε is uniformly bounded with respect
to ε. That is, there exists a constant M1 > 0 such that for all ε > 0 satisfying
τk + ε ≤ τk+1,

|up,ε(s)| ≤M1, s ∈ [0, T ].

As is customary in the optimal control literature, we assume that the governing dy-
namic system satisfies the following linear growth condition: there exists a positive
constant M2 > 0 such that

|f(s,x,u)| ≤M2(1 + |x|), (s,x,u) ∈ [0, T ]× Rn × V.
It then follows from Lemma 6.4.2 in [65] that xp,ε is also uniformly bounded with
respect to ε. Hence, there exists a constant M3 > 0 such that for all ε > 0 satisfying
τk + ε ≤ τk+1,

|xp,ε(s)| ≤M3, s ∈ [0, T ].

Step 2: Case t ≤ τk. If t ≤ τk, then

up,ε(s) = up(s), s ∈ [0, t),

and thus
xp,ε(t) = xp(t).

Consequently,

lim
ε→0+

xp,ε(t)− xp(t)
ε

= 0.

In particular, if t = τk, then

lim
ε→0+

xp,ε(τk)− xp(τk)

ε
= 0,
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which proves equation (28). If t < τk, then it follows from (26) that

φk(t) = 0 = lim
ε→0+

xp,ε(t)− xp(t)
ε

,

which proves equation (27) when t < τk. It remains to prove (27) when t > τk.

Step 3: Definition of ϕε. Define

ϕε(s) := xp,ε(s)− xp(s), s ∈ [0, T ].

Let ε ∈ (0, τk+1 − τk). Then clearly,

τk + ε < τk+1

and thus

up,ε(s) = up(s), s /∈ [τk, τk + ε]. (65)

For each s ∈ [0, T ], we have

ϕε(s) = xp,ε(s)− xp(s) =

∫ s

0

{
f(η,xp,ε(η),up,ε(η))− f(η,xp(η),up(η))

}
dη.

Thus, since f is continuously differentiable and xp,ε and up,ε are uniformly bounded
with respect to ε, there exists a Lipschitz constant M4 > 0 such that

|ϕε(s)| ≤
∫ s

0

M4|ϕε(η)|dη +

∫ s

0

M4|up,ε(η)− up(η)|dη.

By (65),

|ϕε(s)| ≤
∫ s

0

M4|ϕε(η)|dη +

∫
[0,s]∩[τk,τk+ε]

M4|up,ε(η)− up(η)|dη

≤
∫ s

0

M4|ϕε(η)|dη +

∫ τk+ε

τk

M4|up,ε(η)− up(η)|dη

≤ 2M1M4ε+

∫ s

0

M4|ϕε(η)|dη.

Thus, it follows from the Gronwall-Bellman lemma that

|ϕε(s)| ≤M5ε, (66)

where M5 := 2M1M4 exp(M4T ). This inequality holds for all ε ∈ (0, τk+1 − τk).

Step 4: Definitions of ρεk and ρεk+1. Define

ρεk :=

∫ τk+ε

τk

{
f(s,xp,ε(s), ξk)− f(τk,x

p(τk), ξk)
}
ds

and

ρεk+1 :=

∫ τk+ε

τk

{
f(s,xp,ε(s), ξk+1)− f(τk,x

p(τk), ξk+1)
}
ds.

We have

|ρεk| ≤
∫ τk+ε

τk

∣∣f(s,xp,ε(s), ξk)− f(s,xp(s), ξk)
∣∣ds

+

∫ τk+ε

τk

∣∣f(s,xp(s), ξk)− f(τk,x
p(τk), ξk)

∣∣ds.
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Thus,

|ρεk| ≤
∫ τk+ε

τk

M4|ϕε(s)|ds+

∫ τk+ε

τk

M4|s− τk|ds+

∫ τk+ε

τk

M4|xp(s)− xp(τk)|ds,

where M4 is the Lipschitz constant defined in Step 3. Applying (66), we obtain

|ρεk| ≤M4M5ε
2 +

∫ τk+ε

τk

M4|s− τk|ds+

∫ τk+ε

τk

M4|xp(s)− xp(τk)|ds

≤M4M5ε
2 +M4ε

2 +

∫ τk+ε

τk

M4|xp(s)− xp(τk)|ds, (67)

assuming that ε ∈ (0, τk+1 − τk). Now, for each s ∈ [τk, τk + ε],

|xp(s)− xp(τk)| ≤
∫ s

τk

|f(η,xp(η),up(η))|dη ≤
∫ τk+ε

τk

|f(η,xp(η),up(η))|dη.

Thus, since f is continuous and xp and up are bounded on [0, T ], there exists a
constant M6 > 0 such that

|xp(s)− xp(τk)| ≤
∫ τk+ε

τk

|f(η,xp(η),up(η))|dη ≤
∫ τk+ε

τk

M6dη = M6ε. (68)

Substituting (68) into (67) gives

|ρεk| ≤M4M5ε
2 +M4ε

2 +

∫ τk+ε

τk

M4M6εds = M7ε
2, (69)

where M7 := M4(M5 +M6 + 1). Similarly,

|ρεk+1| ≤M7ε
2. (70)

Inequalities (69) and (70) hold whenever ε ∈ (0, τk+1 − τk).

Step 5: Definition of ∆ε
l . Define

∆ε
l (s, α) :=

{
∂f(s,xp(s) + αϕε(s), ξl)

∂x
− ∂f(s,xp(s), ξl)

∂x

}
ϕε(s).

Let γ > 0 be arbitrary. Then since ∂f/∂x is continuous, xp,ε is uniformly bounded
with respect to ε, and ϕε → 0 uniformly as ε→ 0, there exists an ε′ ∈ (0, τk+1−τk),
which depends solely on γ, such that for all ε ∈ (0, ε′),∣∣∣∣∂f(s,xp(s) + αϕε(s), ξl)

∂x
− ∂f(s,xp(s), ξl)

∂x

∣∣∣∣ < γ, (s, α) ∈ [0, T ]× [0, 1].

Thus, it follows from (66) that for all ε ∈ (0, ε′),

|∆ε
l (s, α)| ≤

∣∣∣∣∂f(s,xp(s) + αϕε(s), ξl)

∂x
− ∂f(s,xp(s), ξl)

∂x

∣∣∣∣ · |ϕε(s)| ≤M5εγ, (71)

uniformly with respect to (s, α) ∈ [0, T ]× [0, 1].
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Step 6: Case t > τk. Let i ∈ {k + 1, . . . , p} denote the unique control subinterval
containing t. Then t ∈ [τi−1, τi) if i ≤ p− 1, and t ∈ [τp−1, T ] if i = p.

Let γ ∈ (0, t− τk] be arbitrary but fixed. Furthermore, choose ε so that

0 < ε < min{γ, ε′} < τk+1 − τk, (72)

where ε′ is as defined in Step 5. Then since τk + ε < τk+1 and τk + ε < t,

xp(t) = xp(τk) +

i∑
l=k+1

∫ min{τl,t}

τl−1

f(s,xp(s), ξl)ds (73)

and

xp,ε(t) = xp,ε(τk) +

∫ τk+ε

τk

f(s,xp,ε(s), ξk)ds

+

i∑
l=k+1

∫ min{τl,t}

τl−1+εδk+1,l

f(s,xp,ε(s), ξl)ds,

(74)

where δk+1,l denotes the Kronecker delta function. Equation (74) can be written as

xp,ε(t) = xp,ε(τk) +

∫ τk+ε

τk

{
f(s,xp,ε(s), ξk)− f(s,xp,ε(s), ξk+1)

}
ds

+

i∑
l=k+1

∫ min{τl,t}

τl−1

f(s,xp,ε(s), ξl)ds.

(75)

Since xp,ε(τk) = xp(τk), combining (73) and (75) gives

ϕε(t) =

∫ τk+ε

τk

{
f(s,xp,ε(s), ξk)− f(s,xp,ε(s), ξk+1)

}
ds

+

i∑
l=k+1

∫ min{τl,t}

τl−1

{
f(s,xp,ε(s), ξl)− f(s,xp(s), ξl)

}
ds.

Therefore,

ϕε(t) = ρεk − ρεk+1 + εf(τk,x
p(τk), ξk)− εf(τk,x

p(τk), ξk+1)

+

i∑
l=k+1

∫ min{τl,t}

τl−1

{
f(s,xp,ε(s), ξl)− f(s,xp(s), ξl)

}
ds,

(76)

where ρεk and ρεk+1 are as defined in Step 4. Using the fundamental theorem of
calculus, (76) can be written as

ϕε(t) = ρεk − ρεk+1 + εf(τk,x
p(τk), ξk)− εf(τk,x

p(τk), ξk+1)

+

i∑
l=k+1

∫ min{τl,t}

τl−1

∫ 1

0

∂

∂α

{
f(s,xp(s) + αϕε(s), ξl)

}
dαds.

Hence,

ϕε(t) = ρεk − ρεk+1 + εf(τk,x
p(τk), ξk)− εf(τk,x

p(τk), ξk+1)

+

i∑
l=k+1

∫ min{τl,t}

τl−1

∫ 1

0

∂f(s,xp(s) + αϕε(s), ξl)

∂x
ϕε(s)dαds.
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Rearranging gives

ϕε(t) = ρεk − ρεk+1 + εf(τk,x
p(τk), ξk)− εf(τk,x

p(τk), ξk+1)

+

i∑
l=k+1

∫ min{τl,t}

τl−1

∂f(s,xp(s), ξl)

∂x
ϕε(s)ds

+

i∑
l=k+1

∫ min{τl,t}

τl−1

∫ 1

0

∆ε
l (s, α)dαds,

(77)

where ∆ε
l is as defined in Step 5. Now, the right-continuous solution of the varia-

tional system (24)-(26) is

φk(t) = φk(τ+k ) +

i∑
l=k+1

∫ min{τl,t}

τl−1

∂f(s,xp(s), ξl)

∂x
φk(s)ds,

where φk(·) := φk(·|ξ, τ ). Using the jump condition (25) gives

φk(t) = f(τk,x
p(τk), ξk)− f(τk,x

p(τk), ξk+1)

+

i∑
l=k+1

∫ min{τl,t}

τl−1

∂f(s,xp(s), ξl)

∂x
φk(s)ds.

(78)

From (77) and (78), we obtain∣∣ε−1ϕε(t)− φk(t)
∣∣ ≤ ε−1|ρεk|+ ε−1|ρεk+1|+

∫ t

τk

M8

∣∣ε−1ϕε(s)− φk(s)
∣∣ds

+

i∑
l=k+1

∫ min{τl,t}

τl−1

∫ 1

0

ε−1
∣∣∆ε

l (s, α)
∣∣dαds,

where M8 > 0 is an upper bound for |∂f/∂x| (recall that f is continuously differ-
entiable and xp is bounded). Recall from (72) that ε < τk+1 − τk and ε < ε′. Thus,
we can apply inequalities (69)-(71) to obtain∣∣ε−1ϕε(t)− φk(t)

∣∣ ≤ 2M7ε+M5Tγ +

∫ t

τk

M8

∣∣ε−1ϕε(s)− φk(s)
∣∣ds.

Since ε < γ and τk + γ ≤ t, this inequality becomes∣∣ε−1ϕε(t)− φk(t)
∣∣ ≤ 2M7γ +M5Tγ +

∫ τk+γ

τk

M8

∣∣ε−1ϕε(s)− φk(s)
∣∣ds

+

∫ t

τk+γ

M8

∣∣ε−1ϕε(s)− φk(s)
∣∣ds. (79)

Using (66), we have∣∣ε−1ϕε(s)− φk(s)
∣∣ ≤ ε−1|ϕε(s)|+ |φk(s)| ≤M5 +M9, s ∈ [τk, τk + γ], (80)

where M9 > 0 is an upper bound for |φk| (recall that φk is piecewise-continuous).
Substituting (80) into (79) gives∣∣ε−1ϕε(t)− φk(t)

∣∣ ≤M10γ +

∫ t

τk+γ

M8

∣∣ε−1ϕε(s)− φk(s)
∣∣ds,
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where M10 := 2M7 +M5T +M8(M5 +M9). This inequality holds for any t ≥ τk+γ
uniformly with respect to ε. Thus, for all ε satisfying (72),∣∣ε−1ϕε(s)− φk(s)

∣∣ ≤M10γ +

∫ s

τk+γ

M8

∣∣ε−1ϕε(η)− φk(η)
∣∣dη, s ∈ [τk + γ, T ].

Applying Gronwall’s lemma gives∣∣ε−1ϕε(s)− φk(s)
∣∣ ≤M10 exp(M8T )γ, s ∈ [τk + γ, T ].

In particular, ∣∣ε−1ϕε(t)− φk(t)
∣∣ ≤M10 exp(M8T )γ.

Since γ > 0 was arbitrary, this shows that (27) holds when t > τk.

Appendix B. Proof of Theorem 4.2. We prove the theorem in 3 steps.

Step 1: Preliminaries. Let t ∈ [0, T ] be a fixed time point. Furthermore, let xp(·)
and xp,ε(·) be as defined in Appendix A.

Define

ϕε(s) := xp,ε(s)− xp(s), s ∈ [0, T ].

In addition, define

ρεk :=

∫ τk

τk+ε

{
f(s,xp(s), ξk)− f(τk,x

p(τk), ξk)
}
ds,

ρεk+1 :=

∫ τk

τk+ε

{
f(s,xp,ε(s), ξk+1)− f(τk,x

p(τk), ξk+1)
}
ds.

Note that these definitions of ρεk and ρεk+1 differ from the definitions given in Ap-
pendix A: the integral limits are reversed because ε < 0, and the first term of the
integrand for ρεk depends on xp, not xp,ε.

Using the same arguments as in Step 4 of Appendix A, it can be shown that
there exists a constant M1 > 0 such that for all ε ∈ (τk−1 − τk, 0),

|ρεk| ≤M1ε
2, |ρεk+1| ≤M1ε

2. (81)

Define

∆ε
l (s, α) :=

{
∂f(s,xp(s) + αϕε(s), ξl)

∂x
− ∂f(s,xp(s), ξl)

∂x

}
ϕε(s).

Let γ > 0 be arbitrary. Then it follows from Step 5 of Appendix A that there exists
a corresponding ε′ < 0 such that for all ε ∈ (ε′, 0),

|∆ε
l (s, α)| ≤M2|ε|γ, (s, α) ∈ [0, T ]× [0, 1], (82)

where M2 > 0 is a constant independent of γ and ε.

Step 2: Case t < τk. If t < τk, then for all ε < 0 of sufficiently small magnitude,

up,ε(s) = up(s), s ∈ [0, t].

Thus,

xp,ε(t) = xp(t)

and

lim
ε→0−

xp,ε(t)− xp(t)
ε

= 0 = φk(t).

This proves equation (29) for t < τk.
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Step 3: Case t ≥ τk. Let i ∈ {k + 1, . . . , p} denote the unique control subinterval
containing t. Then t ∈ [τi−1, τi) if i ≤ p− 1, and t ∈ [τp−1, T ] if i = p.

Let ε ∈ (τk−1 − τk, 0). Then

xp(t) = xp(τk + ε) +

∫ τk

τk+ε

f(s,xp(s), ξk)ds

+

i∑
l=k+1

∫ min{τl,t}

τl−1

f(s,xp(s), ξl)ds

(83)

and

xp,ε(t) = xp,ε(τk + ε) +

i∑
l=k+1

∫ min{τl,t}

τl−1+εδk+1,l

f(s,xp,ε(s), ξl)ds, (84)

where δk+1,l denotes the Kronecker delta function. Equation (84) can be written as

xp,ε(t) = xp,ε(τk + ε) +

∫ τk

τk+ε

f(s,xp,ε(s), ξk+1)ds

+

i∑
l=k+1

∫ min{τl,t}

τl−1

f(s,xp,ε(s), ξl)ds.

(85)

Since xp,ε(τk + ε) = xp(τk + ε) for all ε < 0, combining (83) and (85) gives

ϕε(t) =

∫ τk

τk+ε

{
f(s,xp,ε(s), ξk+1)− f(s,xp(s), ξk)

}
ds

+

i∑
l=k+1

∫ min{τl,t}

τl−1

{
f(s,xp,ε(s), ξl)− f(s,xp(s), ξl)

}
ds.

Therefore,

ϕε(t) = ρεk+1 − ρεk − εf(τk,x
p(τk), ξk+1) + εf(τk,x

p(τk), ξk)

+

i∑
l=k+1

∫ min{τl,t}

τl−1

{
f(s,xp,ε(s), ξl)− f(s,xp(s), ξl)

}
ds,

(86)

where ρεk and ρεk+1 are as defined in Step 1. Using the fundamental theorem of
calculus, (86) can be written as

ϕε(t) = ρεk+1 − ρεk − εf(τk,x
p(τk), ξk+1) + εf(τk,x

p(τk), ξk)

+

i∑
l=k+1

∫ min{τl,t}

τl−1

∫ 1

0

∂f(s,xp(s) + αϕε(s), ξl)

∂x
ϕε(s)dαds.

Rearranging gives

ϕε(t) = ρεk+1 − ρεk − εf(τk,x
p(τk), ξk+1) + εf(τk,x

p(τk), ξk)

+

i∑
l=k+1

∫ min{τl,t}

τl−1

∂f(s,xp(s), ξl)

∂x
ϕε(s)ds

+

i∑
l=k+1

∫ min{τl,t}

τl−1

∫ 1

0

∆ε
l (s, α)dαds,

(87)
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where ∆ε
l is as defined in Step 1. Now, the right-continuous solution of the varia-

tional system (24)-(26) is

φk(t) = f(τk,x
p(τk), ξk)− f(τk,x

p(τk), ξk+1)

+

i∑
l=k+1

∫ min{τl,t}

τl−1

∂f(s,xp(s), ξl)

∂x
φk(s)ds.

(88)

From (87) and (88), we obtain∣∣ε−1ϕε(t)− φk(t)
∣∣ ≤ |ε|−1|ρεk|+ |ε|−1|ρεk+1|+

∫ t

τk

M3

∣∣ε−1ϕε(s)− φk(s)
∣∣ds

+

i∑
l=k+1

∫ min{τl,t}

τl−1

∫ 1

0

|ε|−1
∣∣∆ε

l (s, α)
∣∣dαds,

where M3 is an upper bound for |∂f/∂x|. Let γ > 0 be arbitrary and choose ε so
that

max{−γ, ε′, τk−1 − τk} < ε < 0.

Then using inequalities (81) and (82), we see that∣∣ε−1ϕε(t)− φk(t)
∣∣ ≤ 2M1γ +M2Tγ +

∫ t

τk

M3

∣∣ε−1ϕε(s)− φk(s)
∣∣ds.

This inequality holds for any t ≥ τk uniformly with respect to ε. Thus, from
Gronwall’s lemma,∣∣ε−1ϕε(t)− φk(t)

∣∣ ≤ (2M1γ +M2Tγ) exp(M3T ).

Since γ > 0 was arbitrary, this shows that (29) holds when t ≥ τk.
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[4] Z. Benayache, G. Besançon and D. Georges, A new nonlinear control methodology for irriga-

tion canals based on a delayed input model, in “Proceedings of the 17th World Congress of
the International Federation of Automatic Control,” 2008.

[5] J. M. Blatt, Optimal control with a cost of switching control, Journal of the Australian

Mathematical Society – Series B: Applied Mathematics, 19 (1976), 316–332.
[6] M. Boccadoro, Y. Wardi, M. Egerstedt and E. Verriest, Optimal control of switching surfaces

in hybrid dynamical systems, Discrete Event Dynamic Systems: Theory and Applications,

15 (2005), 433–448.
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