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Low-dimensional chaotic attractors for an unstable,
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A. M. Albano, J. Abounadi, T. H. Chyba,* C. E. Searle, and S. Yong

Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010

R. S. Gioggia

Department of Physics, Widener University, Chester, Pennsylvania 19013

N. B. Abraham t

Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Firenze, Italy

Received August 15, 1984; accepted September 24, 1984

Quantitative characterization of the intensity pulsations from an inhomogeneously broadened laser confirm that
observed irregular pulsing has its origins in deterministic chaos corresponding to motion on a strange attractor of
low fractal dimensionality. The pointwise information dimension and the Grassberger-Procaccia K2 (estimators
from below of the fractal dimensionality of the attractor and the Kolmogorov entropy, respectively) have been de-
termined for digitized time series from parameter regions identified qualitatively by power spectra as representing
periodic, period-doubled, quasi-periodic, and chaotic behavior. Some amount of chaos seems present for almost
all operating conditions.

INTRODUCTION

Advances in theoretical understanding of the behavior of
dissipative nonlinear dynamical systems far from thermo-
dynamic equilibrium have provided a basis for describing
certain kinds of irregular asymptotic evolution as determin-
istic chaos.' Key features of such chaos are irregular time
evolution and broadband power spectra, which are never-
theless associated with deterministic motion on an attracting
subspace of the underlying physical variables. These at-
tractors are called strange attractors, in part because evolution
is sensitively dependent on initial conditions and the at-
tracting subspace has fractal dimensionality.

Qualitatively, one can identify the likely presence of an
underlying strange attractor when irregular time dependence
and broadband power spectra appear for a system that was
evolving in an obviously deterministic fashion (such as with
output that was constant or strictly periodic) for nearby pa-
rameter values. Such identifications of chaos are reinforced
if the system is observed to make one of the relatively uni-
versal progressions of increasing complexity as a parameter
is slowly changed [e.g., period doubling (the sequential ap-
pearance of subharmonics to the original pulsing frequency)
or quasi-periodicity (the successive appearance of two in-
commensurate frequencies)] before the appearance of irreg-
ular pulsing and broadband spectra.

Following these prescriptions, we recently studied unstable,
single-mode, inhomogeneously broadened lasers for various
operating conditions.2 Measurements of the temporal and
spectral output characteristics have led to the identification
of regimes of chaotic behavior. Chaotic behavior in lasers is
not unexpected, as analogies have been established between

simple models for single-mode and multimode homogeneously
broadened lasers3 4 and the Lorenz equations,5 which were
designed for the study of convective instabilities in hydro-
dynamics and which were shown to contain deterministic
chaos among their possible solutions. However, the temporal
evolution of inhomogeneously broadened lasers, which have
experimentally accessible regions of unstable operation, 6 has
been modeled successfully only by extremely large numbers
(hundreds) of coupled equations, 7 and the origin or nature of
chaotic solutions is not yet clearly established.

In our previous experimental identification of chaotic be-
havior using qualitative measures, we were not able to dis-
tinguish unambiguously between low-dimensional deter-
ministic chaos and broadband stochastic noise originating
from the contributions of many uncorrelated sources. Such
noisy behavior may arise from direct multisource contribu-
tions or because the deterministic states of the system are
relatively unstable (or only weakly stable) and act as sensitive
amplifiers of noisy perturbations.

Quantitative methods of analyzing digitized time series to
distinguish stochastic noise from deterministic chaos were
recently reported.8 -10 Since their introduction, these meth-
ods have been refined, greatly reducing the data requirements
for obtaining reliable estimates of such characteristic prop-
erties as Lyapunov exponents, metric entropies, and attractor
dimensionalities.1 The reduced data requirements make it
possible to apply these techniques to the kinds of digitized
data that can be obtained from our low-power lasers with their
high pulsing frequencies. An added benefit of these tech-
niques is that, when noise acts as a simple additive diffusion,
either originating in the laser system (e.g., mechanical dis-
turbances of the laser or spontaneous emission12"13) or arising
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from the detection electronics, it can be separated from dy-
namical behavior if the noise blurring is small compared with
the characteristic dynamical features.9 Another advantage
of these techniques is that recording of a single digitized
variable of the system permits the reconstruction of the
topological character of the attractor in the total variable
space. This is accomplished by embedding the time series in
an N-dimensional vector space in which each vector has
components that are data values taken with equal time-delay
separations.4' 6 By the Whitney embedding theorem, 1 4 the
attractor constructed in a sufficiently large embedding space
has the same topological structure as the true attractor in the
variable space (that is, it will have the same Lyapunov expo-
nents, metric entropies, and dimensionalities).

A good introduction to these measurement and analysis
techniques can be found in descriptions of their recently
successful application in the study of low-frequency insta-
bilities in hydrodynamic systems.' 7 Here, we demonstrate the
robustness of the methods by moving to systems that differ
by nearly 108 in the fundamental pulsing frequency.

EXPERIMENTAL SYSTEM

The laser system studied was that previously described2"18 that
uses the high-gain 3.51-Am laser transition in xenon. The
population inversion is created by a dc discharge in the laser
tube controlled by a well-regulated high-voltage power supply
and a series ballast resistor, which effectively suppress fluc-
tuations in the excitation process.

The intensity output was digitized by a Tektronix fast
transient digitizer, which provided 10-bit resolution and se-
quences of up to 512 data points. The data sets were stored
by an Apple microcomputer and were transferred to a Bur-
roughs 6900 computer for analysis.

For fixed pressure and discharge current, data sets were
taken for different cavity detunings, which gave qualitatively
different power spectra. The pressure mixture used was 180
mTorr of xenon (99% enriched 136Xe) and 600 mTorr of heli-
um at an excitation current of 4 mA, a particular parameter
set from the complete survey of the laser operating conditions
reported elsewhere.18

Control data sets were taken by supplying a sine-wave input
to the digitizer (thus retaining any systematic errors that were
due to the digitizer) and by computer generation of periodic,
quasi-periodic, and random data sets with suitable resolution
and data-set length.

RESULTS

Figures 1 and 2 show two typical data sets, with a portion of
the digitized time series shown in Figs. 1 (a) and 1 (b) and the
associated intensity power spectrum from a scanning, time-
averaging rf-spectrum analyzer shown in Figs. 1(b) and 2(b).
The sampling interval r for Figs. 1(a) and 2(a) was set to 1
nsec. In Figs. 1(c) and 2(c) we give, for visualization, a sample
two-dimensional embedding of the data [x (t) versus x t + pr)
forp = 10].

In Figs. 1(d) and 2(d) we plot curves following the pre-
scription of Procaccia and Grassberger, 9 namely, for each
embedding dimension q, a vector is defined as x(t), x(t + p T),
x (t + 2pr), .. ., x [t + (q - 1)pT], where p is an integer and
r is the sampling interval. Then we determine the total
number of distances between these vectors that are less than

, and we plot this number N(e) versus e in a log-log plot for
embedding dimensions 1-10, as shown in Figs. 1(d) and 2(d).
Although for simplicity this is not shown, we continue the
process of calculations and plots up to embedding dimension
20.

To interpret these data, we refer to Fig. 3, where we have
the corresponding results for the digitized sine wave. The
log-log plot of N(E) versus e shows three distinct regions for
each dimension. For e large enough to exceed the largest in-
terpoint distance, N(e) saturates at a constant Npq (-), the
total number of interpoint distances given by Npq (H) = [N
- (q - )p](N - qp)/2, where N is the total number of data
points and q and p are as defined above. For small e, the
distances are blurred by noise sources, so the dependence of
N(E) on e increases with increasing embedding dimension.
For intermediate e values, we expect to find that N(E) scales
as eP, when the embedding dimension is large enough to reflect
fully the topological character of the strange attractor, where
v is defined by Grassberger and Procaccia 9 as the pointwise
information dimension and is an estimator from below for the
fractal dimensionality of the attractor. For a simple periodic
signal we expect v = 1, while quasi-periodic signals from a
mixture of two incommensurate frequencies should give v =
2 and chaotic signals should give v > 2.

Figures 1(e), 2(e), and (3e) show the slope v of the log-log
plots versus log N(E) for dimensions 1-10, and Figs. 1(f), 2(f),
and 3(f) show these results for dimensions 11-20. These
figures were drawn to determine those regions in the logeN(e)
versus loge (e) plots that are relatively free of the effects of both
noise [low e or low N(e)] and saturation [high E or high N(E)].
Since there are crucial restrictions imposed by our relatively
small number of data points, we chose to seek regions defined
by logeN rather than loge (E), as was done, for instance, by
Brandstatter et al."7 In Figures 3(d) and 3(f), the interme-
diate regions of e[for logeN(e) between 8.5 and 9.5], we see that
the curves approach the same slope with a value of 1.0 ± 0.1.
The values converge rapidly with increasing embedding di-
mension, although we see that 10% accuracy is achieved only
for dimensions 11 and larger. We have indications from
various control data sets that a small overestimate may occur
because of the limited number of data points and the finite
resolution of the digitizer, yet these results show powerful
quantitative accuracy for the method when applied to data
sets with our experimental limitations.

Procaccia and Grassberger also define an entropy K2 (Ref.
9), which can readily be extracted from these plots and which
provides an estimate from below for the Kolmogorov entropy
K. The useful relationships are that K2 and K should be zero
for periodic (ordered) signals, finite (and nonzero) for chaotic
attractors, and infinite for stochastic random noise. In the
limit of a sufficiently large embedding dimension to recover
the attractor topology, the spacing between the parallel line
parts of the log-log plots of N(E) versus e should be given by
K 2 pr, where pT is the delay time used in the embedding
procedure. [This is strictly true in the limitE - 0 and if in-
stead of N(e) one plots a true probability N(E)/N(co) in each
case.] As our plots are made for N(e), and N(e) changes with
increasing embedding dimension, we obtain values of K 2pr
overestimated by 0.004p. Here we calculate K 2 (e)pr, the
separations at finite E.

Figure 4(a) shows the values of the vertical separation of the
curves of Figs. 1(d), 2(d), 3(d) and their extensions to higher
dimensions versus the embedding dimension for the two data

Albano et al.
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Fig. 1. Analysis of data set A9 (VPZT = 1.58 X 0.3 kV). (a) Part of the digitized data set plotted as a function of time. (b) Power spectrum.(c) Portrait of a two-dimensional embedding space, x versus x+1. (d) LogeN(e) versus logeE for embedding dimensions 1-10. Vectors inthe d-dimensional embedding space are defined by (Xk, Xk+l,.,Xk+d-1), i.e., p = 1. (e) Slope of logeN(e) versus loges curves as functionsof logeN(e) for embedding dimensions 1-10. (f) Same as (e) for embedding dimensions 11-20. Note change in vertical scale.

sets shown in Figs. 1 and 2 as well as for the digitized sinus-
oidal signal shown in Fig. 3, all taken at loge(e) = 1.9.

Also included are two sets of results for 500 random num-
bers generated by an Apple LIe. The asterisks marked 1.9
were calculated at loge(e) = 1.9; the unlabeled asterisks, at
loge(e) = 3.3.

The values obtained for the random signal at logeE = 3.3 are
flawed for low embedding dimensions by the fact that, here,
some of the loge (N) versus loge (E) curves have already begun
to saturate. The values obtained at loge (e) = 1.9, on the other
hand, are unreliable at higher embedding dimensions since

here one deals with a relatively small number of points. Thus
we show results only for embedding dimensions 1-5. In fact,
for embedding dimensions greater than 10 there are no pairs
of points with separations less than e = e 9. Nevertheless,
one sees that the values of K2 (e) for the random signal tend
to much higher levels than those for the other data, and there
is no indication at all that they tend toward a limit.

The plot for the sinusoidal signal shows evidence of pro-
gression toward zero reaching a value of 0.047, which appears
to us to be the limit possible with the effective 10-bit digitizing
accuracy in our sampling of the signal. The values of K2 pr
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Fig. 2. Analysis of data set I4 (Vpzr = 1.82 X 0.3 kV). Figures correspond to those in Fig. 1 except that for (e) and (f) vectors in the d-dimensional

embedding space are defined by (Xk, Xk+2, . - Xk+2s-2), i.e., p = 2.

for the two data sets are distinctly above the value for the si-
nusoidal signal with values (corrected for the offset) of 0.175

for the results of Fig. 1 and 0.190 for the results of Fig. 2 when

taken at dimension 19, and these seem to be converging to
values above the value for the sine-wave data. These nonzero

values suggest that the data sets are taken from a chaotic
operating condition, a result that is consistent with the cor-
responding values of the dimension that can be extracted from

Fig. 4(b). Here, we see that the slope converges with in-

creasing dimension, just as the curve separation did. The
asymptotic values are greater than 2, again suggesting chaotic
behavior.

Returning to the data sets in Figs. 1 and 2, we again see that

for sufficiently large N(E) the values of the slopes coalesce,

becoming independent of the embedding dimension. The
plateau regions of these coalesced values are smaller than in
the sine-wave case because of the poorer signal-to-noise ratio

of the low-power laser output compared with the noise con-

tributions of the detector, preamplifier, and digitizer. Ap-
parently noise and signal are resolved for high dimensions, but
the continuous decline of the slope with increasing N(e), where
the curves have converged (rather than a strict plateau), sig-
nals that we may underestimate the true attractor dimen-
sionality by taking the value of convergence. We cannot
achieve a better noise rejection with our limited number of
points. Variations of the delay (controlled by p) in defining
the vectors were found to make only minor qualitative and
quantitative changes in these results.

Summarizing many data sets for each parameter value and
a wide variety of different cavity detunings, we plot in Fig. 5
the laser-power output, the frequencies of the principal peaks
in the power spectrum, and the values of v and K2(f)T for each

setting. The error bars indicate the range of results for dif-
ferent data sets.

From the frequencies we can identify regions that might be

classified qualitatively as periodic, period-doubled (P2 and

. l
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P4), chaotic, and quasi-periodic (two incommensurate
frequencies). The dimensionalities and entropies do not
provide equally simple qualitative distinctions, but there are
strong correlations.

The dimensionalities are consistently in the range 2-4, with
noticeable increases in the chaotic region. The fact that op-
erating regions that result in seemingly periodic signals (only
one principal power-spectrum peak and its harmonics) have
attractor dimensionalities of order 2 instead of 1 is not fully
explained. Tests of computer-generated data do not show
such a large discrepancy, even when one takes into account
the noise levels and the brevity of the data sets. However, it
is not yet theoretically established that there are regions of
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entirely stable periodic pulsations for this type of laser, so we
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spectra between regions of more-or-less periodic chaos.

Close examination of the plot of peak frequencies in Fig. 5
reveals many subtleties that might be overlooked in qualita-
tively discussing a single power spectrum. In the center and
at the right are two regions of broadband spectra with ap-
parent period-doubling sequences leading to them (P1-P2-
P4-C appears from VPZT = 1.95 to 1.85, and P1-P2-C2-P2
appears for VPZT = 1.75 to 1.8. The dimensionality calcula-
tion shows a sharp jump in the dimension when these se-
quences converge to the chaotic regions. If our identifications
are quantitatively accurate, we would expect dimension 1 for
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the periodic (and the period-doubling) regions and a dimen-
sion greater than 2 for the chaos. The apparently higher
values require careful examination and a further round of
measurements to determine if they have their origins in
measurement uncertainty. It is encouraging, however, to find
the expected jump in dimensionality at the qualitatively
identified transition to broader power spectra.

In the left-hand third of the tuning range in Fig. 5, there is
a clear region of quasi-periodic behavior with the ratio of the
frequencies varying continuously with detuning from 3:2 near
the center to 2:1 at the far left with an apparent or near locking
for the last three data values. Thus those last three spectra,
which appear as a kind of period doubling if taken separately,
must be identified differently as part of the region of quasi-
periodicity. In the region of VPZT = 1.6-1.75, where we see
clearly two-frequency behavior in the power spectrum, the
dimensionality is constant near a value of 3.0. Again, this is
larger than the expected value (in this case 2.0), but the fact
that the value is constant is consistent proof of the stability
of our methods of analysis if not of their precise numerical
validity.

Specific sequences to be expected in this system are not yet
known because of the difficulty in modeling the complicated
standing-wave effects, including overlapping hole burning in
an unstable regime. Nevertheless, the dimensionality changes
in ways consistent with intuitive interpretation of the power
spectra.

The abrupt changes in dimensionality near the chaotic re-
gions (near line-center tuning) are well beyond measurement
uncertainties and are correlated with abrupt changes in the
power spectra, samples of which are shown in Fig. 6. We see
that there are not only shifts in the qualitative nature of the
spectra (QP to P2 to P4 to P1) but also abrupt shifts in the
fundamental pulsing frequency that correlate with some of
the abrupt changes in dimension. Probably these result from
complex interaction of the counterpropagating waves through
coupling to the same atoms, as can be visualized qualitatively
in the overlapping of the holes burned in the gain profile.'8

Research is in progress to make similar measurements of
the intensity pulsations of an unstable unidirectional ring laser
for which previous qualitative measurements have indicated
smoother sequences of instabilities'9 '2 0 and for which theo-
retical analyses of stability thresholds and time evolution are
more tractable.

CONCLUSIONS

These results demonstrate that particular broadband power
spectra and irregular time series coming from an inhomo-
geneously broadened, single-mode laser are consistent with
their representing deterministic motion on a strange attractor
of low fractal dimensionality. Further tests of other di-
mensionalities, entropies, and Lyapunov exponents are re-
quired to establish complete certainty of this argument.
However, the results clearly demonstrate that these broad-
band spectra do not arise from stochastic noise sources.

There is a strong temptation to argue that low dimension-
alities provide evidence that a small set of collective variables
can be used to model the system dynamics. This argument
is not directly supported theoretically, however, as the di-
mensionality gives only the local structure of the attractor and
does not provide information on the existence of particular

collective varibles or key normal coordinate combinations of
the physical variables. Such a reduced set would be a useful
simplification from the hundreds of equations now used in
modeling time-dependent solutions for inhomogeneously
broadened lasers. 7 Although a small set of key variables is
not ruled out by the low-dimensionality results, initial efforts
with only a few variables21 have produced results inconsistent
with those of the more-exact, albeit more cumbersome,
models.
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