62 research outputs found

    Chemical characterization of laboratory-generated tar ball particles

    Get PDF
    The chemical properties of laboratory-generated tar ball (Lab-TB) particles produced from dry distillate (wood tars) of three different wood species in the laboratory were investigated by analytical techniques that had never been used before for their characterization. The elemental compositions of laboratory-generated tar balls (Lab- TBs) from three tree species were very similar to one another and to those characteristic of atmospheric tar balls (TBs) collected from the savanna fire during the SAFARI 2000 sampling campaign. The O=C and H= C molar ratios of the generated Lab-TBs were at the upper limit characteristic of soot particles. The Fourier transform infrared spectroscopy (FTIR) spectra of the generated Lab-TBs were very similar to one another as well and also showed some similarity with those of atmospheric humic-like substances (HULIS). The FT-IR measurements indicated that Lab-TBs have a higher proportion of aromatic structure than HULIS and the oxygen atoms of Lab-TBs are mainly found in hydroxyl and keto functional groups. Whereas Raman activity was detected in the starting materials of the Lab-TBs (wood tars) in the range of 1000–1800 c

    Testing polyhalite as a tool to overcome nutrient deficiencies in organic cabbage culture

    Get PDF
    In addition to regular nitrogen (N), phosphorus (P), and potassium (K) requirements, Brassica crops need significant amounts of calcium (Ca), magnesium (Mg), and sulfur (S). The organic farming approach restricts the use of chemical fertilizers, considerably challenging balanced mineral nutrition of cole crops such as cabbage (Brassica oleracea var. oleracea). Polyhalite, a natural mineral, is an authorized fertilizer (Polysulphate®) for producers of organic crops in many countries. Consisting of 14% K2O, 48% SO3, 6% MgO, and 17% CaO, polyhalite can be considered a useful supplementary fertilizer of four essential nutrients in organic farming. The objectives of the present study were to evaluate the effects of polyhalite application on cabbage performance and compare it with equivalent commercial organic fertilizers. When used on fertile soil, rich with K, Ca, and Mg, the effects of supplementary nutrition on crop performance were absent. Sulfur uptake tended to be greater with polyhalite than in the non-fertilized control (p = 0.071), driven by a combination of increased marketable yield as well as S concentration in leaves. Sulfur nutrition appeared key to enhancing cabbage crop performance. Polyhalite displayed a strong tendency to enhance and stabilize yields, compared to alternatives. It tended to be better as a Ca donor compared to foliar Ca application, and was at least equivalent to gypsum. Harbouring four essential nutrients, polyhalite may be a suitable fertilizer, particularly for the organic market. It is advantageous being natural and easy to spread. However, in order to fully demonstrate the advantages of polyhalite, it should also be tested at sites with much weaker soil fertility

    Advances in Understanding Environmental Risks of Red Mud After the Ajka Spill, Hungary

    Get PDF
    In the 5 years since the 2010 Ajka red mud spill (Hungary), there have been 46 scientific studies assessing the key risks and impacts associated with the largest single release of bauxite-processing residue (red mud) to the environment. These studies have provided insight into the main environmental concerns, as well as the effectiveness of remedial efforts that can inform future management of red mud elsewhere. The key immediate risks after the spill were associated with the highly caustic nature of the red mud slurry and fine particle size, which once desiccated, could generate fugitive dust. Studies on affected populations showed no major hazards identified beyond caustic exposure, while red mud dust risks were considered equal to or lesser than those provided by urban dusts of similar particle size distribution. The longer-term environmental risks were related to the saline nature of the spill material (salinization of inundated soils) and the release and the potential cycling of oxyanion-forming metals and metalloids (e.g., Al, As, Cr, Mo, and V) in the soil–water environment. Of these, those that are soluble at high pH, inefficiently removed from solution during dilution and likely to be exchangeable at ambient pH are of chief concern (e.g., Mo and V). Various ecotoxicological studies have identified negative impacts of red mud-amended soils and sediments at high volumes (typically [5 %) on different test organisms, with some evidence of molecularlevel impacts at high dose (e.g., genotoxic effects on plants and mice). These data provide a valuable database to inform future toxicological studies for red mud. However, extensive management efforts in the aftermath of the spill greatly limited these exposure risks through leachate neutralization and red mud recovery from the affected land. Monitoring of affected soils, stream sediments, waters and aquatic biota (fungi, invertebrates and fish) have all shown a very rapid recovery toward prespill conditions. The accident also prompted research that has also highlighted potential benefits of red mud use for critical raw material recovery (e.g., Ga, Co, V, rare earths, inform), carbon sequestration, biofuel crop production, and use as a soil ameliorant

    The link between lithospheric scale deformations and deep fluid emanations: Inferences from the Southeastern Carpathians, Romania

    Get PDF
    Understanding the formation, migration and emanation of deep CO2, H2O and noble gases (He–Ne) in deep-seated deformation settings is crucial to understand the complex relationship between deep-originated fluids and lithospheric deformation. To gain a better insight into these phenomena, we studied the origin of H2O, CO2 and noble gases of gas-rich springs found in the Târgu Secuiesc Basin located in the southeasternmost part of the Carpathian-Pannonian region of Europe. This study area is one of the best natural examples to understand the connection between the deep sources of gas emanations and deep-seated deformation zones, providing an excellent analogue for regions worldwide with similar tectonic settings and fluid emanation properties. We studied the δ2H and δ18O stable isotopic ratios of the spring waters, and the δ13C, He and Ne stable isotopic ratio of the emanating CO2-rich gases dissolved in the mineral spring waters in Covasna town and its vicinity. Based on the δ2H, δ13C, δ18O stable isotopic ratios, the spring waters and the majority of the gases are released through two consecutive fluid infiltration events. The preservation of the metamorphic signal of the upwelling H2O is linked to the local groundwater flow and fault abundancy. Furthermore, the noble gas isotopic ratios show a high degree of atmospheric contamination in the dissolved water gasses that is most likely related to the local hydrogeology. Nevertheless, the elevated corrected helium stable isotopic ratios (Rc/Ra) of our filtered data suggest that part of the emanating gases have a potential upper mantle source component. Beneath the Southeastern Carpathians, mantle fluids can have multiple origin including the dehydration of the sinking slab hosting the Vrancea seismogenic zone, the local asthenospheric upwelling and the lithospheric mantle itself. The flux of the mantle fluids is enhanced by lithospheric scale deformation zones that also support the fluid inflow from the upper mantle into the lower crust. The upwelling CO2–H2O mantle fluids may induce the release of crustal fluids by shifting the pore fluid composition (X(CO2)) and, consequently, initiating decarbonisation and devolatilization metamorphic reactions as a result of carbonate and hydrous mineral destabilisation in the crust. Based on the p-T-X(CO2) conditions of calc-silicates and the local low geotherm, we emphasise the importance of the upwelling fluids in the release and upward migration of further H2O and CO2 in the shallower lower and upper crust. Our observations in the Southeastern Carpathians show a strong similarity to other deep-seated deformation zones worldwide (e.g., Himalayas, Alps, San Andreas Fault). We infer that migration of deep fluids may also play an important role in addition to temperature control on the generation of crustal fluids in deep-seated deformation zones

    Effects of Feeding Bt MON810 Maize to Pigs for 110 Days on Peripheral Immune Response and Digestive Fate of the cry1Ab Gene and Truncated Bt Toxin

    Get PDF
    peer-reviewedBackground: The objective of this study was to evaluate potential long-term (110 days) and age-specific effects of feeding genetically modified Bt maize on peripheral immune response in pigs and to determine the digestive fate of the cry1Ab gene and truncated Bt toxin. Methodology/Principal Findings: Forty day old pigs (n = 40) were fed one of the following treatments: 1) isogenic maize-based diet for 110 days (isogenic); 2) Bt maize-based diet (MON810) for 110 days (Bt); 3) Isogenic maize-based diet for 30 days followed by Bt maize-based diet for 80 days (isogenic/Bt); and 4) Bt maize-based diet (MON810) for 30 days followed by isogenic maize-based diet for 80 days (Bt/isogenic). Blood samples were collected during the study for haematological analysis, measurement of cytokine and Cry1Ab-specific antibody production, immune cell phenotyping and cry1Ab gene and truncated Bt toxin detection. Pigs were sacrificed on day 110 and digesta and organ samples were taken for detection of the cry1Ab gene and the truncated Bt toxin. On day 100, lymphocyte counts were higher (P<0.05) in pigs fed Bt/isogenic than pigs fed Bt or isogenic. Erythrocyte counts on day 100 were lower in pigs fed Bt or isogenic/Bt than pigs fed Bt/isogenic (P<0.05). Neither the truncated Bt toxin nor the cry1Ab gene were detected in the organs or blood of pigs fed Bt maize. The cry1Ab gene was detected in stomach digesta and at low frequency in the ileum but not in the distal gastrointestinal tract (GIT), while the Bt toxin fragments were detected at all sites in the GIT. Conclusions/Significance: Perturbations in peripheral immune response were thought not to be age-specific and were not indicative of Th 2 type allergenic or Th 1 type inflammatory responses. There was no evidence of cry1Ab gene or Bt toxin translocation to organs or blood following long-term feeding.The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 211820 and the Teagasc Walsh Fellowship programme

    Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan

    Get PDF
    Urban ambient air concentrations of 39 aromatic (including benzene, toluene, and xylenes) and aliphatic volatile organic compounds (VOCs) were measured in Yokohama city, Japan. Yokohama city was selected as a case study to assess the amount of VOC released from Industrial area to characterize the ambient air quality with respect to VOC as well as to know the impact of petrochemical storage facilities on local air quality. For this purpose, ambient air samples were collected (from June 2007 to November 2008) at six selected locations which are designated as industrial, residential, or commercial areas. To find out the diurnal variations of VOC, hourly nighttime sampling was carried out for three nights at one of the industrial locations (Shiohama). Samples were analyzed using gas chromatographic system (GC-FID). Results show strong variation between day and nighttime concentrations and among the seasons. Aliphatic fractions were most abundant, suggesting petrochemical storage facilities as the major source of atmospheric hydrocarbons. High concentrations of benzene, toluene, ethyl benzene, and xylene (BTEX) were observed at industrial locations. BTEX showed strong diurnal variation which is attributed to change in meteorology. During our campaign, low ambient VOC concentrations were observed at the residential site

    Mass distributions and morphological and chemical characterization of urban aerosols in the continental Balkan area (Belgrade)

    Get PDF
    This work presents characteristics of atmospheric aerosols of urban central Balkans area, using a size-segregated aerosol sampling method, calculation of mass distributions, SEM/EDX characterization, and ICP/MS analysis. Three types of mass distributions were observed: distribution with a pronounced domination of coarse mode, bimodal distribution, and distribution with minimum at 1 μm describing the urban aerosol. SEM/EDX analyses have shown morphological difference and variation in the content of elements in samples. EDX spectra demonstrate that particles generally contain the following elements: Al, Ca, K, Fe, Mg, Ni, K, Si, S. Additionally, the presence of As, Br, Sn, and Zn found in air masses from southeast segment points out the anthropogenic activities most probably from mining activities in southeastern part of Serbia. The ratio Al/Si equivalent to the ratio of desert dust was associated with air masses coming from southeastern and southwestern segments, pointing to influences from North Africa and Middle East desert areas whereas the Al/Si ratio in other samples is significantly lower. In several samples, we found high values of aluminum in the nucleation mode. Samples with low share of crustal elements in the coarse mode are collected when Mediterranean air masses prevailed, while high share in the coarse mode was associated with continental air masses that could be one of the approaches for identification of the aerosol origin. Graphical abstract ᅟ.This work presents characteristics of atmospheric aerosols of urban central Balkans area, using a size-segregated aerosol sampling method, calculation of mass distributions, SEM/EDX characterization, and ICP/MS analysis. Three types of mass distributions were observed: distribution with a pronounced domination of coarse mode, bimodal distribution, and distribution with minimum at 1 mu m describing the urban aerosol. SEM/EDX analyses have shown morphological difference and variation in the content of elements in samples. EDX spectra demonstrate that particles generally contain the following elements: Al, Ca, K, Fe, Mg, Ni, K, Si, S. Additionally, the presence of As, Br, Sn, and Zn found in air masses from southeast segment points out the anthropogenic activities most probably from mining activities in southeastern part of Serbia. The ratio Al/Si equivalent to the ratio of desert dust was associated with air masses coming from southeastern and southwestern segments, pointing to influences from North Africa and Middle East desert areas whereas the Al/Si ratio in other samples is significantly lower. In several samples, we found high values of aluminum in the nucleation mode. Samples with low share of crustal elements in the coarse mode are collected when Mediterranean air masses prevailed, while high share in the coarse mode was associated with continental air masses that could be one of the approaches for identification of the aerosol origin

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link

    Study of ion transport processes in soils by radioabsorption method

    No full text
    corecore