5,103 research outputs found

    Submillimeter H2O masers in water-fountain nebulae

    Get PDF
    We report the first detection of submillimeter water maser emission toward water-fountain nebulae, which are post-AGB stars that exhibit high-velocity water masers. Using APEX we found emission in the ortho-H2O (10_29-9_36) transition at 321.226 GHz toward three sources: IRAS 15445-5449, IRAS 18043-2116 and IRAS 18286-0959. Similarly to the 22 GHz masers, the submillimeter water masers are expanding with a velocity larger than that of the OH masers, suggesting that these masers also originate in fast bipolar outflows. In IRAS 18043-2116 and IRAS 18286-0959, which figure among the sources with the fastest water masers, the velocity range of the 321 GHz masers coincides with that of the 22 GHz masers, indicating that they likely coexist. Towards IRAS 15445-5449 the submillimeter masers appear in a different velocity range, indicating that they are tracing different regions. The intensity of the submillimeter masers is comparable to that of the 22 GHz masers, implying that the kinetic temperature of the region where the masers originate should be Tk > 1000 K. We propose that the passage of two shocks through the same gas can create the conditions necessary to explain the presence of strong high-velocity 321 GHz masers coexisting with the 22 GHz masers in the same region.Comment: 4 pages, 1 figure. Accepted for publication in A&A Letter

    A non-resonant dark-side solution to the solar neutrino problem

    Get PDF
    We re-analyse spin-flavour precession solutions to the solar neutrino problem in the light of the recent SNO CC result as well as the 1258--day Super-Kamiokande data and the upper limit on solar anti-neutrinos. In a self-consistent magneto-hydrodynamics approach the resulting scheme has only 3 effective parameters: Δm2\Delta m^2, μB⊥\mu B_\perp and the neutrino mixing angle θ\theta. We show how a rates-only analysis for fixed μB⊥\mu B_\perp slightly favours spin-flavour precession (SFP) solutions over oscillations (OSC). In addition to the resonant solution (RSFP for short), there is a new non-resonant solution (NRSFP) in the ``dark-side''. Both RSFP and NRSFP lead to flat recoil energy spectra in excellent agreement with the latest SuperKamiokande data. We also show that in the presence of a neutrino transition magnetic moment of 10−1110^{-11} Bohr magneton, a magnetic field of 80 KGauss eliminates all large mixing solutions other than the so-called LMA solution.Comment: 12 pages, 3 postscript figures, using elsart.cls. Published versio

    Testing Relativity at High Energies Using Spaceborne Detectors

    Get PDF
    (ABRIDGED) The Gamma-ray Large Area Space Telescope (GLAST) will measure the spectra of distant extragalactic sources of high energy gamma-rays. GLAST can look for energy dependent propagation effects from such sources as a signal of Lorentz invariance violation (LIV). Such sources should also exhibit high energy spectral cutoffs from pair production interactions with low energy photons. The properties of such cutoffs can also be used to test LIV. Detectors to measure gamma-ray polarization can look for the depolarizing effect of space-time birefingence predicted by loop quantum gravity. A spaceborne detector array looking down on Earth to study extensive air showers produced by ultrahigh energy cosmic rays can study their spectral properties and look for a possible deviation from the predicted GZK effect as another signal of LIV.Comment: 14 pages, Text of invitated talk presented at the "From Quantum to Cosmos: Fundamental Physics Studies from Space" meeting. More references adde

    The Circumstellar Structure and Excitation Effects around the Massive Protostar Cepheus A HW 2

    Full text link
    We report SMA 335 GHz continuum observations with angular resolution of ~0.''3, together with VLA ammonia observations with ~1'' resolution toward Cep A HW 2. We find that the flattened disk structure of the dust emission observed by Patel et al. is preserved at the 0.''3 scale, showing an elongated structure of ~$0.''6 size (450 AU) peaking on HW 2. In addition, two ammonia cores are observed, one associated with a hot-core previously reported, and an elongated core with a double peak separated by ~1.''3 and with signs of heating at the inner edges of the gas facing HW 2. The double-peaked ammonia structure, as well as the double-peaked CH3CN structure reported previously (and proposed to be two independent hot-cores), surround both the dust emission as well as the double-peaked SO2 disk structure found by Jimenez-Serra et al. All these results argue against the interpretation of the elongated dust-gas structure as due to a chance-superposition of different cores; instead, they imply that it is physically related to the central massive object within a disk-protostar-jet system.Comment: 12 pages, 3 figures; accepted for publication in the Astrophysical Journa

    Inhomogeneous Loop Quantum Cosmology: Hybrid Quantization of the Gowdy Model

    Get PDF
    The Gowdy cosmologies provide a suitable arena to further develop Loop Quantum Cosmology, allowing the presence of inhomogeneities. For the particular case of Gowdy spacetimes with the spatial topology of a three-torus and a content of linearly polarized gravitational waves, we detail a hybrid quantum theory in which we combine a loop quantization of the degrees of freedom that parametrize the subfamily of homogeneous solutions, which represent Bianchi I spacetimes, and a Fock quantization of the inhomogeneities. Two different theories are constructed and compared, corresponding to two different schemes for the quantization of the Bianchi I model within the {\sl improved dynamics} formalism of Loop Quantum Cosmology. One of these schemes has been recently put forward by Ashtekar and Wilson-Ewing. We address several issues including the quantum resolution of the cosmological singularity, the structure of the superselection sectors in the quantum system, or the construction of the Hilbert space of physical states.Comment: 16 pages, version accepted for publication in Physical Review

    Massive protostars as gamma-ray sources

    Get PDF
    Massive protostars have associated bipolar outflows with velocities of hundreds of km s−1^{-1}. Such outflows can produce strong shocks when interact with the ambient medium leading to regions of non-thermal radio emission. We aim at exploring under which conditions relativistic particles are accelerated at the terminal shocks of the protostellar jets and can produce significant gamma-ray emission. We estimate the conditions necessary for particle acceleration up to very high energies and gamma-ray production in the non-thermal hot spots of jets associated with massive protostars embedded in dense molecular clouds. We show that relativistic Bremsstrahlung and proton-proton collisions can make molecular clouds with massive young stellar objects detectable by the {\it Fermi}{} satellite at MeV-GeV energies and by Cherenkov telescope arrays in the GeV-TeV range. Gamma-ray astronomy can be used to probe the physical conditions in star forming regions and particle acceleration processes in the complex environment of massive molecular clouds.Comment: 10 pages, 5 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    Massive protostars as gamma-ray sources

    Get PDF
    Massive protostars have associated bipolar outflows with velocities of hundreds of km s−1^{-1}. Such outflows can produce strong shocks when interact with the ambient medium leading to regions of non-thermal radio emission. We aim at exploring under which conditions relativistic particles are accelerated at the terminal shocks of the protostellar jets and can produce significant gamma-ray emission. We estimate the conditions necessary for particle acceleration up to very high energies and gamma-ray production in the non-thermal hot spots of jets associated with massive protostars embedded in dense molecular clouds. We show that relativistic Bremsstrahlung and proton-proton collisions can make molecular clouds with massive young stellar objects detectable by the {\it Fermi}{} satellite at MeV-GeV energies and by Cherenkov telescope arrays in the GeV-TeV range. Gamma-ray astronomy can be used to probe the physical conditions in star forming regions and particle acceleration processes in the complex environment of massive molecular clouds.Comment: 10 pages, 5 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    High mass star formation in the infrared dark cloud G11.11-0.12

    Full text link
    We report detection of moderate to high-mass star formation in an infrared dark cloud (G11.11-0.12) where we discovered class II methanol and water maser emissions at 6.7 GHz and 22.2 GHz, respectively. We also observed the object in ammonia inversion transitions. Strong emission from the (3,3) line indicates a hot (~60 K) compact component associated with the maser emission. The line width of the hot component (4 km/s), as well as the methanol maser detection, are indicative of high mass star formation. To further constrain the physical parameters of the source, we derived the spectral energy distribution (SED) of the dust continuum by analysing data from the 2MASS survey, HIRAS, MSX, the Spitzer Space Telescope, and interferometric 3mm observations. The SED was modelled in a radiative transfer program: a) the stellar luminosity equals 1200 L_sun corresponding to a ZAMS star of 8 M_sun; b) the bulk of the envelope has a temperature of 19 K; c) the mass of the remnant protostellar cloud in an area 8x10^17 cm or 15 arcsec across amounts to 500M_sun, if assuming standard dust of the diffuse medium, and to about 60 M_sun, should the grains be fluffy and have ice mantles; d) the corresponding visual extinction towards the star is a few hundred magnitudes. The near IR data can be explained by scattering from tenuous material above a hypothetical disk. The class II methanol maser lines are spread out in velocity over 11 km/s. To explain the kinematics of the masing spots, we propose that they are located in a Kepler disk at a distance of about 250 AU. The dust temperatures there are around 150 K, high enough to evaporate methanol--containing ice mantles.Comment: 10 pages, 6 figures, Accepted for publication in Astronomy & Astrophysics Journa

    An Improved Approximate Consensus Algorithm in the Presence of Mobile Faults

    Full text link
    This paper explores the problem of reaching approximate consensus in synchronous point-to-point networks, where each pair of nodes is able to communicate with each other directly and reliably. We consider the mobile Byzantine fault model proposed by Garay '94 -- in the model, an omniscient adversary can corrupt up to ff nodes in each round, and at the beginning of each round, faults may "move" in the system (i.e., different sets of nodes may become faulty in different rounds). Recent work by Bonomi et al. '16 proposed a simple iterative approximate consensus algorithm which requires at least 4f+14f+1 nodes. This paper proposes a novel technique of using "confession" (a mechanism to allow others to ignore past behavior) and a variant of reliable broadcast to improve the fault-tolerance level. In particular, we present an approximate consensus algorithm that requires only ⌈7f/2⌉+1\lceil 7f/2\rceil + 1 nodes, an ⌊f/2⌋\lfloor f/2 \rfloor improvement over the state-of-the-art algorithms. Moreover, we also show that the proposed algorithm is optimal within a family of round-based algorithms
    • …
    corecore