5,103 research outputs found
Submillimeter H2O masers in water-fountain nebulae
We report the first detection of submillimeter water maser emission toward
water-fountain nebulae, which are post-AGB stars that exhibit high-velocity
water masers. Using APEX we found emission in the ortho-H2O (10_29-9_36)
transition at 321.226 GHz toward three sources: IRAS 15445-5449, IRAS
18043-2116 and IRAS 18286-0959. Similarly to the 22 GHz masers, the
submillimeter water masers are expanding with a velocity larger than that of
the OH masers, suggesting that these masers also originate in fast bipolar
outflows. In IRAS 18043-2116 and IRAS 18286-0959, which figure among the
sources with the fastest water masers, the velocity range of the 321 GHz masers
coincides with that of the 22 GHz masers, indicating that they likely coexist.
Towards IRAS 15445-5449 the submillimeter masers appear in a different velocity
range, indicating that they are tracing different regions. The intensity of the
submillimeter masers is comparable to that of the 22 GHz masers, implying that
the kinetic temperature of the region where the masers originate should be Tk >
1000 K. We propose that the passage of two shocks through the same gas can
create the conditions necessary to explain the presence of strong high-velocity
321 GHz masers coexisting with the 22 GHz masers in the same region.Comment: 4 pages, 1 figure. Accepted for publication in A&A Letter
A non-resonant dark-side solution to the solar neutrino problem
We re-analyse spin-flavour precession solutions to the solar neutrino problem
in the light of the recent SNO CC result as well as the 1258--day
Super-Kamiokande data and the upper limit on solar anti-neutrinos. In a
self-consistent magneto-hydrodynamics approach the resulting scheme has only 3
effective parameters: , and the neutrino mixing angle
. We show how a rates-only analysis for fixed slightly
favours spin-flavour precession (SFP) solutions over oscillations (OSC). In
addition to the resonant solution (RSFP for short), there is a new non-resonant
solution (NRSFP) in the ``dark-side''. Both RSFP and NRSFP lead to flat recoil
energy spectra in excellent agreement with the latest SuperKamiokande data. We
also show that in the presence of a neutrino transition magnetic moment of
Bohr magneton, a magnetic field of 80 KGauss eliminates all large
mixing solutions other than the so-called LMA solution.Comment: 12 pages, 3 postscript figures, using elsart.cls. Published versio
Testing Relativity at High Energies Using Spaceborne Detectors
(ABRIDGED) The Gamma-ray Large Area Space Telescope (GLAST) will measure the
spectra of distant extragalactic sources of high energy gamma-rays. GLAST can
look for energy dependent propagation effects from such sources as a signal of
Lorentz invariance violation (LIV). Such sources should also exhibit high
energy spectral cutoffs from pair production interactions with low energy
photons. The properties of such cutoffs can also be used to test LIV. Detectors
to measure gamma-ray polarization can look for the depolarizing effect of
space-time birefingence predicted by loop quantum gravity. A spaceborne
detector array looking down on Earth to study extensive air showers produced by
ultrahigh energy cosmic rays can study their spectral properties and look for a
possible deviation from the predicted GZK effect as another signal of LIV.Comment: 14 pages, Text of invitated talk presented at the "From Quantum to
Cosmos: Fundamental Physics Studies from Space" meeting. More references
adde
The Circumstellar Structure and Excitation Effects around the Massive Protostar Cepheus A HW 2
We report SMA 335 GHz continuum observations with angular resolution of
~0.''3, together with VLA ammonia observations with ~1'' resolution toward Cep
A HW 2. We find that the flattened disk structure of the dust emission observed
by Patel et al. is preserved at the 0.''3 scale, showing an elongated structure
of ~$0.''6 size (450 AU) peaking on HW 2. In addition, two ammonia cores are
observed, one associated with a hot-core previously reported, and an elongated
core with a double peak separated by ~1.''3 and with signs of heating at the
inner edges of the gas facing HW 2. The double-peaked ammonia structure, as
well as the double-peaked CH3CN structure reported previously (and proposed to
be two independent hot-cores), surround both the dust emission as well as the
double-peaked SO2 disk structure found by Jimenez-Serra et al. All these
results argue against the interpretation of the elongated dust-gas structure as
due to a chance-superposition of different cores; instead, they imply that it
is physically related to the central massive object within a disk-protostar-jet
system.Comment: 12 pages, 3 figures; accepted for publication in the Astrophysical
Journa
Inhomogeneous Loop Quantum Cosmology: Hybrid Quantization of the Gowdy Model
The Gowdy cosmologies provide a suitable arena to further develop Loop
Quantum Cosmology, allowing the presence of inhomogeneities. For the particular
case of Gowdy spacetimes with the spatial topology of a three-torus and a
content of linearly polarized gravitational waves, we detail a hybrid quantum
theory in which we combine a loop quantization of the degrees of freedom that
parametrize the subfamily of homogeneous solutions, which represent Bianchi I
spacetimes, and a Fock quantization of the inhomogeneities. Two different
theories are constructed and compared, corresponding to two different schemes
for the quantization of the Bianchi I model within the {\sl improved dynamics}
formalism of Loop Quantum Cosmology. One of these schemes has been recently put
forward by Ashtekar and Wilson-Ewing. We address several issues including the
quantum resolution of the cosmological singularity, the structure of the
superselection sectors in the quantum system, or the construction of the
Hilbert space of physical states.Comment: 16 pages, version accepted for publication in Physical Review
Massive protostars as gamma-ray sources
Massive protostars have associated bipolar outflows with velocities of
hundreds of km s. Such outflows can produce strong shocks when interact
with the ambient medium leading to regions of non-thermal radio emission. We
aim at exploring under which conditions relativistic particles are accelerated
at the terminal shocks of the protostellar jets and can produce significant
gamma-ray emission. We estimate the conditions necessary for particle
acceleration up to very high energies and gamma-ray production in the
non-thermal hot spots of jets associated with massive protostars embedded in
dense molecular clouds. We show that relativistic Bremsstrahlung and
proton-proton collisions can make molecular clouds with massive young stellar
objects detectable by the {\it Fermi}{} satellite at MeV-GeV energies and by
Cherenkov telescope arrays in the GeV-TeV range. Gamma-ray astronomy can be
used to probe the physical conditions in star forming regions and particle
acceleration processes in the complex environment of massive molecular clouds.Comment: 10 pages, 5 figures, 2 tables, accepted for publication in Astronomy
and Astrophysic
Massive protostars as gamma-ray sources
Massive protostars have associated bipolar outflows with velocities of
hundreds of km s. Such outflows can produce strong shocks when interact
with the ambient medium leading to regions of non-thermal radio emission. We
aim at exploring under which conditions relativistic particles are accelerated
at the terminal shocks of the protostellar jets and can produce significant
gamma-ray emission. We estimate the conditions necessary for particle
acceleration up to very high energies and gamma-ray production in the
non-thermal hot spots of jets associated with massive protostars embedded in
dense molecular clouds. We show that relativistic Bremsstrahlung and
proton-proton collisions can make molecular clouds with massive young stellar
objects detectable by the {\it Fermi}{} satellite at MeV-GeV energies and by
Cherenkov telescope arrays in the GeV-TeV range. Gamma-ray astronomy can be
used to probe the physical conditions in star forming regions and particle
acceleration processes in the complex environment of massive molecular clouds.Comment: 10 pages, 5 figures, 2 tables, accepted for publication in Astronomy
and Astrophysic
High mass star formation in the infrared dark cloud G11.11-0.12
We report detection of moderate to high-mass star formation in an infrared
dark cloud (G11.11-0.12) where we discovered class II methanol and water maser
emissions at 6.7 GHz and 22.2 GHz, respectively. We also observed the object in
ammonia inversion transitions. Strong emission from the (3,3) line indicates a
hot (~60 K) compact component associated with the maser emission. The line
width of the hot component (4 km/s), as well as the methanol maser detection,
are indicative of high mass star formation. To further constrain the physical
parameters of the source, we derived the spectral energy distribution (SED) of
the dust continuum by analysing data from the 2MASS survey, HIRAS, MSX, the
Spitzer Space Telescope, and interferometric 3mm observations. The SED was
modelled in a radiative transfer program: a) the stellar luminosity equals 1200
L_sun corresponding to a ZAMS star of 8 M_sun; b) the bulk of the envelope has
a temperature of 19 K; c) the mass of the remnant protostellar cloud in an area
8x10^17 cm or 15 arcsec across amounts to 500M_sun, if assuming standard dust
of the diffuse medium, and to about 60 M_sun, should the grains be fluffy and
have ice mantles; d) the corresponding visual extinction towards the star is a
few hundred magnitudes. The near IR data can be explained by scattering from
tenuous material above a hypothetical disk. The class II methanol maser lines
are spread out in velocity over 11 km/s. To explain the kinematics of the
masing spots, we propose that they are located in a Kepler disk at a distance
of about 250 AU. The dust temperatures there are around 150 K, high enough to
evaporate methanol--containing ice mantles.Comment: 10 pages, 6 figures, Accepted for publication in Astronomy &
Astrophysics Journa
An Improved Approximate Consensus Algorithm in the Presence of Mobile Faults
This paper explores the problem of reaching approximate consensus in
synchronous point-to-point networks, where each pair of nodes is able to
communicate with each other directly and reliably. We consider the mobile
Byzantine fault model proposed by Garay '94 -- in the model, an omniscient
adversary can corrupt up to nodes in each round, and at the beginning of
each round, faults may "move" in the system (i.e., different sets of nodes may
become faulty in different rounds). Recent work by Bonomi et al. '16 proposed a
simple iterative approximate consensus algorithm which requires at least
nodes. This paper proposes a novel technique of using "confession" (a mechanism
to allow others to ignore past behavior) and a variant of reliable broadcast to
improve the fault-tolerance level. In particular, we present an approximate
consensus algorithm that requires only nodes, an
improvement over the state-of-the-art algorithms.
Moreover, we also show that the proposed algorithm is optimal within a family
of round-based algorithms
- …