278 research outputs found

    Inhibition of Reactive Gliosis Attenuates Excitotoxicity-Mediated Death of Retinal Ganglion Cells

    Get PDF
    Reactive gliosis is a hallmark of many retinal neurodegenerative conditions, including glaucoma. Although a majority of studies to date have concentrated on reactive gliosis in the optic nerve head, very few studies have been initiated to investigate the role of reactive gliosis in the retina. We have previously shown that reactive glial cells synthesize elevated levels of proteases, and these proteases, in turn, promote the death of retinal ganglion cells (RGCs). In this investigation, we have used two glial toxins to inhibit reactive gliosis and have evaluated their effect on protease-mediated death of RGCs. Kainic acid was injected into the vitreous humor of C57BL/6 mice to induce reactive gliosis and death of RGCs. C57BL/6 mice were also treated with glial toxins, alpha-aminoadipic acid (AAA) or Neurostatin, along with KA. Reactive gliosis was assessed by immunostaining of retinal cross sections and retinal flat-mounts with glial fibrillary acidic protein (GFAP) and vimentin antibodies. Apoptotic cell death was assessed by TUNEL assays. Loss of RGCs was determined by immunostaining of flat-mounted retinas with Brn3a antibodies. Proteolytic activities of matrix metalloproteinase-9 (MMP-9), tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) were assessed by zymography assays. GFAP-immunoreactivity indicated that KA induced reactive gliosis in both retinal astrocytes and in Muller cells. AAA alone or in combination with KA decreased GFAP and vimentin-immunoreactivity in Mϋller cells, but not in astrocytes. In addition AAA failed to decrease KA-mediated protease levels and apoptotic death of RGCs. In contrast, Neurostatin either alone or in combination with KA, decreased reactive gliosis in both astrocytes and Mϋller cells. Furthermore, Neurostatin decreased protease levels and prevented apoptotic death of RGCs. Our findings, for the first time, indicate that inhibition of reactive gliosis decreases protease levels in the retina, prevents apoptotic death of retinal neurons, and provides substantial neuroprotection

    MetaboHunter: an automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One-dimensional <sup>1</sup>H-NMR spectroscopy is widely used for high-throughput characterization of metabolites in complex biological mixtures. However, the accurate identification of individual compounds is still a challenging task, particularly in spectral regions with higher peak densities. The need for automatic tools to facilitate and further improve the accuracy of such tasks, while using increasingly larger reference spectral libraries becomes a priority of current metabolomics research.</p> <p>Results</p> <p>We introduce a web server application, called MetaboHunter, which can be used for automatic assignment of <sup>1</sup>H-NMR spectra of metabolites. MetaboHunter provides methods for automatic metabolite identification based on spectra or peak lists with three different search methods and with possibility for peak drift in a user defined spectral range. The assignment is performed using as reference libraries manually curated data from two major publicly available databases of NMR metabolite standard measurements (HMDB and MMCD). Tests using a variety of synthetic and experimental spectra of single and multi metabolite mixtures show that MetaboHunter is able to identify, in average, more than 80% of detectable metabolites from spectra of synthetic mixtures and more than 50% from spectra corresponding to experimental mixtures. This work also suggests that better scoring functions improve by more than 30% the performance of MetaboHunter's metabolite identification methods.</p> <p>Conclusions</p> <p>MetaboHunter is a freely accessible, easy to use and user friendly <sup>1</sup>H-NMR-based web server application that provides efficient data input and pre-processing, flexible parameter settings, fast and automatic metabolite fingerprinting and results visualization via intuitive plotting and compound peak hit maps. Compared to other published and freely accessible metabolomics tools, MetaboHunter implements three efficient methods to search for metabolites in manually curated data from two reference libraries.</p> <p>Availability</p> <p><url>http://www.nrcbioinformatics.ca/metabohunter/</url></p

    Using brain cell-type-specific protein interactomes to interpret neurodevelopmental genetic signals in schizophrenia

    Get PDF
    Genetics have nominated many schizophrenia risk genes and identified convergent signals between schizophrenia and neurodevelopmental disorders. However, functional interpretation of the nominated genes in the relevant brain cell types is often lacking. We executed interaction proteomics for six schizophrenia risk genes that have also been implicated in neurodevelopment in human induced cortical neurons. The resulting protein network is enriched for common variant risk of schizophrenia in Europeans and East Asians, is down-regulated in layer 5/6 cortical neurons of individuals affected by schizophrenia, and can complement fine-mapping and eQTL data to prioritize additional genes in GWAS loci. A sub-network centered on HCN1 is enriched for common variant risk and contains proteins (HCN4 and AKAP11) enriched for rare protein-truncating mutations in individuals with schizophrenia and bipolar disorder. Our findings showcase brain cell-type-specific interactomes as an organizing framework to facilitate interpretation of genetic and transcriptomic data in schizophrenia and its related disorders

    Dissociable Influences of Auditory Object vs. Spatial Attention on Visual System Oscillatory Activity

    Get PDF
    Given that both auditory and visual systems have anatomically separate object identification (“what”) and spatial (“where”) pathways, it is of interest whether attention-driven cross-sensory modulations occur separately within these feature domains. Here, we investigated how auditory “what” vs. “where” attention tasks modulate activity in visual pathways using cortically constrained source estimates of magnetoencephalograpic (MEG) oscillatory activity. In the absence of visual stimuli or tasks, subjects were presented with a sequence of auditory-stimulus pairs and instructed to selectively attend to phonetic (“what”) vs. spatial (“where”) aspects of these sounds, or to listen passively. To investigate sustained modulatory effects, oscillatory power was estimated from time periods between sound-pair presentations. In comparison to attention to sound locations, phonetic auditory attention was associated with stronger alpha (7–13 Hz) power in several visual areas (primary visual cortex; lingual, fusiform, and inferior temporal gyri, lateral occipital cortex), as well as in higher-order visual/multisensory areas including lateral/medial parietal and retrosplenial cortices. Region-of-interest (ROI) analyses of dynamic changes, from which the sustained effects had been removed, suggested further power increases during Attend Phoneme vs. Location centered at the alpha range 400–600 ms after the onset of second sound of each stimulus pair. These results suggest distinct modulations of visual system oscillatory activity during auditory attention to sound object identity (“what”) vs. sound location (“where”). The alpha modulations could be interpreted to reflect enhanced crossmodal inhibition of feature-specific visual pathways and adjacent audiovisual association areas during “what” vs. “where” auditory attention

    Say on Pay: A wolf in sheep’s clothing?

    Get PDF
    This paper debates whether Say on Pay can fix executive pay. We argue that Say on Pay benefits executive pay when shareholders’ voice offsets CEO power and mitigates directors’ information deficiencies. We admonish however that Say on Pay may raise novel problems. The pay resulting from Say on Pay can harm stakeholders whose interests differ from those of shareholders influential in pay- setting. Moreover, boards may resist shareholders’ intervention in pay-setting and, accordingly, manage compensation disclosures to ensure a passing shareholder vote. Consequently, Say on Pay may not only fail to remedy suboptimal pay but also legitimize it

    A correction for sample overlap in genome-wide association studies in a polygenic pleiotropy-informed framework.

    Get PDF
    BACKGROUND: There is considerable evidence that many complex traits have a partially shared genetic basis, termed pleiotropy. It is therefore useful to consider integrating genome-wide association study (GWAS) data across several traits, usually at the summary statistic level. A major practical challenge arises when these GWAS have overlapping subjects. This is particularly an issue when estimating pleiotropy using methods that condition the significance of one trait on the signficance of a second, such as the covariate-modulated false discovery rate (cmfdr). RESULTS: We propose a method for correcting for sample overlap at the summary statistic level. We quantify the expected amount of spurious correlation between the summary statistics from two GWAS due to sample overlap, and use this estimated correlation in a simple linear correction that adjusts the joint distribution of test statistics from the two GWAS. The correction is appropriate for GWAS with case-control or quantitative outcomes. Our simulations and data example show that without correcting for sample overlap, the cmfdr is not properly controlled, leading to an excessive number of false discoveries and an excessive false discovery proportion. Our correction for sample overlap is effective in that it restores proper control of the false discovery rate, at very little loss in power. CONCLUSIONS: With our proposed correction, it is possible to integrate GWAS summary statistics with overlapping samples in a statistical framework that is dependent on the joint distribution of the two GWAS

    Characterization techniques for studying the properties of nanocarriers for systemic delivery

    Get PDF
    Nanocarriers have attracted a huge interest in the last decade as efficient drug delivery systems and diagnostic tools. They enable effective, targeted, controlled delivery of therapeutic molecules while lowering the side effects caused during the treatment. The physicochemical properties of nanoparticles determine their in vivo pharmacokinetics, biodistribution and tolerability. The most analyzed among these physicochemical properties are shape, size, surface charge and porosity and several techniques have been used to characterize these specific properties. These different techniques assess the particles under varying conditions, such as physical state, solvents etc. and as such probe, in addition to the particles themselves, artifacts due to sample preparation or environment during measurement. Here, we discuss the different methods to precisely evaluate these properties, including their advantages or disadvantages. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed

    Modeling linkage disequilibrium increases accuracy of polygenic risk scores

    Get PDF
    corecore