384 research outputs found

    Brownian motors driven by Poissonian fluctuations

    Get PDF
    Overdamped directed motion of Brownian motors in a spatially periodic system, induced by Poissonian fluctuations of various statistics and driven by thermal noise, is investigated. Two models of asymmetric as well as two models of symmetric Poissonian fluctuations are considered. Transport properties in dependence upon statistics of fluctuations imposed on the system are analyzed

    Exploration of Burnout, Emotional Thriving, and Emotional Recovery in an Academic Medical Center: a Mixed Methods Quality Improvement Project

    Get PDF
    Introduction: Healthcare provider burnout, an indicator of wellbeing, impacts patient safety, provider distress, and employee turnover. In this mixed methods, multi-site quality improvement study conducted \u3c6 months prior to the start of the COVID-19 pandemic, we assessed employee wellbeing in a large clinical department. Methods: Wellbeing surveys were sent electronically to Department of Medicine clinicians, researchers, administrators, and staff from August-September 2019 assessing perceptions of Burnout, Emotional Thriving (ET), and Emotional Recovery (ER). Qualitative responses were reviewed for themes using mixed inductive-deductive analysis. The initial coding was done by small teams with consensus obtained through large group discussions. This study was IRB-approved as non-human subjects research. Results: Of the 671 respondents, 54% met criteria for burnout (Burnout+), 65% for ER (ER+), and 61% for ET (ET+). ER+ and ET+ were present in nearly half of Burnout+ respondents (53% and 43% respectively). Several themes emerged in the qualitative analysis: workload and expectations; tangible resources; work culture; and salary/benefits, with leadership influencing each of the domains. Conclusion: Burnout, ET, and ER can co-exist within the same individual. Employee wellbeing is not adequately reflected by the binary of whether or not an individual is experiencing burnout. All employees at academic medical centers, including staff, researchers, and clinicians, are vulnerable to the same workplace factors driving burnout. Our findings have been used to target areas of intervention during the COVID-19 pandemic at our institution. We propose that other academic medical centers may have similar workplace stressors that they could assess and target for improvement

    Radiocarbon dating of modern peat profiles: Pre- and post-bomb C-14 variations in the construction of age-depth models

    Get PDF
    We present studies of 9 modern (up to 400-yr-old) peat sections from Slovenia, Switzerland, Austria, Italy, and Finland. Precise radiocarbon dating of modern samples is possible due to the large bomb peak of atmospheric 14C concentration in 1963 and the following rapid decline in the 14C level. All the analyzed 14C profiles appeared concordant with the shape of the bomb peak of atmospheric 14C concentration, integrated over some time interval with a length specific to the peat section. In the peat layers covered by the bomb peak, calendar ages of individual peat samples could be determined almost immediately, with an accuracy of 23 yr. In the pre-bomb sections, the calendar ages of individual dated samples are determined in the form of multi-modal probability distributions of about 300 yr wide (about AD 16501950). However, simultaneous use of the post-bomb and pre-bomb 14C dates, and lithological information, enabled the rejection of most modes of probability distributions in the pre-bomb section. In effect, precise age-depth models of the post-bomb sections have been extended back in time, into the wiggly part of the 14C calibration curve

    Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene

    Get PDF
    Catalytic steam reforming of waste high density polyethylene for the production of hydrogen/syngas has been investigated using different zeolite supported nickel catalysts in a two-stage pyrolysis-catalytic steam reforming reactor system. Experiments were conducted into the influence of the type of zeolite where Ni/ZSM5-30, Ni/ÎČ-zeolite-25 and the Ni/Y-zeolite-30 catalysts were compared in relation to hydrogen and syngas production. Results showed that the Ni/ZSM5-30 catalyst generated the maximum syngas production of 100.72 mmol g‟Âč plastic , followed by the Ni/ÎČ-zeolite-25 and Ni/Y-zeolite-30 catalyst. In addition, the ZSM-5 supported nickel catalyst showed excellent coke resistance and thermal stability. It was found that the Y type zeolite supported nickel catalyst possessed narrower pores than the other catalysts, which in turn, promoted coke deactivation of the catalyst. Large amounts of filamentous carbons were observed on the surface of the Ni/Y-zeolite-30 catalyst from scanning electron microscope images. In addition, the influence of Si:Al molar ratio for the Ni/ZSM-5 catalysts in relation to hydrogen and syngas yield was inv estigated. The results indicated that hydrogen production was less affected by the Si:Al ratio than the type of zeolite support. Also, the Ni/ZSM5-30 catalyst was further investigated to determine the influence of different process parameters on hydrogen and syngas yield via different reforming temperatures (650, 750, 850 °C) and steam feeding rate (0, 3, 6 g h‟Âč). It was found that increasing both the temperature and steam feeding rate favoured hydrogen production from the pyrolysis-catalytic reforming of waste polyethylene. The optimum catalytic performance in terms of syngas production was achieved when the steam feeding rate was 6 g h‟Âč and catalyst temperature was 850 °C in the presence of Ni/ZSM5-30 catalyst, with production of 66.09 mmol H 2 g‟Âč(plastic) and 34.63 mmol CO gg‟Âč(plastic)

    Two refreshing views of Fluctuation Theorems through Kinematics Elements and Exponential Martingale

    Get PDF
    In the context of Markov evolution, we present two original approaches to obtain Generalized Fluctuation-Dissipation Theorems (GFDT), by using the language of stochastic derivatives and by using a family of exponential martingales functionals. We show that GFDT are perturbative versions of relations verified by these exponential martingales. Along the way, we prove GFDT and Fluctuation Relations (FR) for general Markov processes, beyond the usual proof for diffusion and pure jump processes. Finally, we relate the FR to a family of backward and forward exponential martingales.Comment: 41 pages, 7 figures; version2: 45 pages, 7 figures, minor revisions, new results in Section

    Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts

    Get PDF
    This work focuses on the removal of the tar derived from biomass gasification by catalytic steam reforming on Ni/Al2O3 catalysts. Different tar model compounds (phenol, toluene, methyl naphthalene, indene, anisole and furfural) were individually steam reformed (after dissolving each one in methanol), as well as a mixture of all of them, at 700 °C under a steam/carbon (S/C) ratio of 3 and 60 min on stream. The highest conversions and H2 potential were attained for anisole and furfural, while methyl naphthalene presented the lowest reactivity. Nevertheless, the higher reactivity of oxygenates compared to aromatic hydrocarbons promoted carbon deposition on the catalyst (in the 1.5–2.8 wt.% range). When the concentration of methanol is decreased in the feedstock and that of toluene or anisole is increased, the selectivity to CO is favoured in the gaseous products, thus increasing coke deposition on the catalyst and decreasing catalyst activity for the steam reforming reaction. Moreover, an increase in Ni loading in the catalyst from 5 to 20% enhances carbon conversion and H2 formation in the steam reforming of a mixture of all the model compounds studied, but these values decrease for a Ni content of 40%. Coke formation also increased by increasing Ni loading, attaining its maximum value for 40% Ni (6.5 wt.%)

    A Subset of Osteoblasts Expressing High Endogenous Levels of PPARÎł Switches Fate to Adipocytes in the Rat Calvaria Cell Culture Model

    Get PDF
    Understanding fate choice and fate switching between the osteoblast lineage (ObL) and adipocyte lineage (AdL) is important to understand both the developmental inter-relationships between osteoblasts and adipocytes and the impact of changes in fate allocation between the two lineages in normal aging and certain diseases. The goal of this study was to determine when during lineage progression ObL cells are susceptible to an AdL fate switch by activation of endogenous peroxisome proliferator-activated receptor (PPAR)gamma.Multiple rat calvaria cells within the ObL developmental hierarchy were isolated by either fractionation on the basis of expression of alkaline phosphatase or retrospective identification of single cell-derived colonies, and treated with BRL-49653 (BRL), a synthetic ligand for PPARgamma. About 30% of the total single cell-derived colonies expressed adipogenic potential (defined cytochemically) when BRL was present. Profiling of ObL and AdL markers by qRT-PCR on amplified cRNA from over 160 colonies revealed that BRL-dependent adipogenic potential correlated with endogenous PPARgamma mRNA levels. Unexpectedly, a significant subset of relatively mature ObL cells exhibited osteo-adipogenic bipotentiality. Western blotting and immunocytochemistry confirmed that ObL cells co-expressed multiple mesenchymal lineage determinants (runt-related transcription factor 2 (Runx2), PPARgamma, Sox9 and MyoD which localized in the cytoplasm initially, and only Runx2 translocated to the nucleus during ObL progression. Notably, however, some cells exhibited both PPARgamma and Runx2 nuclear labeling with concomitant upregulation of expression of their target genes with BRL treatment.We conclude that not only immature but a subset of relatively mature ObL cells characterized by relatively high levels of endogenous PPARgamma expression can be switched to the AdL. The fact that some ObL cells maintain capacity for adipogenic fate selection even at relatively mature developmental stages implies an unexpected plasticity with important implications in normal and pathological bone development

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes

    Get PDF
    Carbon nanotubes (CNTs) have been proven to be possible as high-value by-products of hydrogen production from gasification of waste plastics. In this work, steam content in the gasification process was investigated to increase the quality of CNTs in terms of purity. Three different plastics-low density polyethylene (LDPE), polypropylene (PP) and polystyrene (PS) were studied in a two stage pyrolysis-gasification reactor. Plastics samples were pyrolysed in nitrogen at 600°C, before the evolved gases were passed to a second stage where steam was injected and the gases were reformed at 800°C in the presence of a nickel-alumina catalyst. To investigate the effect that steam plays on CNT production, steam injection rates of 0, 0.25, 1.90 and 4.74gh-1 were employed. The CNTs produced from all three plastics were multiwalled CNTs with diameters between 10 and 20nm and several microns in length. For all the plastic samples, raising the steam injection rate led to increased hydrogen production as steam reforming and gasification of deposited carbon increased. High quality CNTs, as observed from TEM, TPO and Raman spectroscopy, were produced by controlling the steam injection rate. The largest yield for LDPE was obtained at 0gh-1 steam injection rate, whilst PP and PS gave their largest yields at 0.25gh-1. Overall the largest CNT yield was obtained for PS at 0.25gh-1, with a conversion rate of plastic to CNTs of 32wt%
    • 

    corecore