175 research outputs found

    Second Harmonic Generation imaging of collagen fibrillogenesis

    No full text
    International audienceDevelopment of nonlinear optical microscopy has significantly improved three-dimensional (3D) imaging of biological tissues in recent years. In particular, collagen has been shown to exhibit endogenous Second Harmonic Generation (SHG) signals and SHG microscopy has proved to enable the visualization of collagen architecture in tissues with unequalled contrast and specificity [1, 2]. Type I collagen is a major structural protein in mammals and shows highly structured macromolecular organizations specific to each tissue. It is synthesized by cells as triple helices, which self-assemble outside the cells into fibrils that further form fibers, lamellae or other three-dimensional (3D) networks. This assembly mechanism depends critically on the collagen concentration, as well as on the temperature, pH and ionic strength of the solution in vitro. Thorough characterization of collagen fibrillogenesis is crucial to understand the biological mechanisms of tissue formation and tissue remodeling in response to a variety of pathologies. Booming of tissue engineering furthermore requires advanced in situ quantitative imaging techniques to verify whether the tissue substitutes display appropriate biomimetic 3D organization for cell culture scaffolds or functional implants. In this study, we continuously monitored the formation of collagen fibrils by time-lapse SHG microscopy [3]. Fibrillogenesis was triggered in a controlled way by increasing the pH in a dilute solution of collagen I. The fibril density was measured every 10 to 20 minutes as the number of voxels with significant SHG signal in 3D image stacks [1]. Our results showed reproducible dynamics of fibrillar collagen formation that could be changed by tuning the pH (see figure 1). We also monitored the growth of single fibrils and measured the length increase over time, which had never been reported before using an optical technique. We then correlated these SHG images to TEM images at nanometer-scale resolution by blocking the fibrillogenesis at early stages and drying the samples. It showed that SHG microscopy allows imaging of fibrils with a diameter down to 30-50 nm in our experimental conditions. We finally investigated surface-mediated fibrillogenesis by adding silica nanoparticles to the solution [4]. We used Two-Photon excited fluorescence (2PEF) microscopy to visualize the fluorescently-died nanoparticles and quantify the self-assembly of collagen around these nanoparticles. In conclusion, SHG microscopy enabled sensitive and well contrasted 3D visualization of collagen fibrillogenesis in a non invasive way. This work illustrates the potential of SHG microscopy for the rational design and characterization of collagen-based biomaterials. 0 200 400 600 800 0.0 0.5 1.0 1.5 2.0 2.5 Pixel fraction (%) Time (min) (d) (a) (c) (b) Fig 1. 3D reconstruction of SHG images of collagen fibrillogenesis (at pH=6.5) after a) 170 b) 410 and c) 730 minutes; d) Experimental kinetics of fibril density in the SHG images (black dots) with exponential fitting (red line). References [1] M

    Rheological behavior of thermoreversible k-carrageenan/nanosilica gels

    Get PDF
    The rheological behavior of silica/κ-carrageenan nanocomposites has been investigated as a function of silica particle size and load. The addition of silica nanoparticles was observed to invariably impair the gelation process, as viewed by the reduction of gel strength and decrease of gelation and melting temperatures. This weakening effect is seen, for the lowest particle size, to become slightly more marked as silica concentration (or load) is increased and at the lowest load as particle size is increased. These results suggest that, under these conditions, the particles act as physical barriers to polysaccharide chain aggregation and, hence, gelation. However, for larger particle sizes and higher loads, gel strength does not weaken with size or concentration but, rather, becomes relatively stronger for intermediate particles sizes, or remains unchanged for the largest particles, as a function of load. This indicates that larger particles in higher number do not seem to increasingly disrupt the gel, as expected, but rather promote the formation of stable gel network of intermediate strength. The possibility of this being caused by the larger negative surface charge found for the larger particles is discussed. This may impede further approximation of neighboring particles thus leaving enough inter-particle space for gel formation, taking advantage of a high local polysaccharide concentration due to the higher total space occupied by large particles at higher loads.FCT - PTDC/QUI/67712/2006FEDE

    Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    Get PDF
    The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure

    Chemically and thermally stable silica nanowires with a β-sheet peptide core for bionanotechnology

    Get PDF
    Background: A series of amyloidogenic peptides based on the sequence KFFEAAAKKFFE template the silica precursor, tetraethyl orthosilicate to form silica-nanowires containing a cross-β peptide core. Results: Investigation of the stability of these fibres reveals that the silica layers protect the silica-nanowires allowing them to maintain their shape and physical and chemical properties after incubation with organic solvents such as 2-propanol, ethanol, and acetonitrile, as well as in a strong acidic solution at pH 1.5. Furthermore, these nanowires were thermally stable in an aqueous solution when heated up to 70 °C, and upon autoclaving. They also preserved their conformation following incubation up to 4 weeks under these harsh conditions, and showed exceptionally high physical stability up to 1000 °C after ageing for 12 months. We show that they maintain their β-sheet peptide core even after harsh treatment by confirming the β-sheet content using Fourier transform infrared spectra. The silica nanowires show significantly higher chemical and thermal stability compared to the unsiliconised fibrils. Conclusions: The notable chemical and thermal stability of these silica nanowires points to their potential for use in microelectromechanics processes or fabrication for nanotechnological devices

    Investigation of Polyurea-Crosslinked Silica Aerogels as a Neuronal Scaffold: A Pilot Study

    Get PDF
    BACKGROUND: Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. however, the interaction of neurons with aerogels remains to be investigated. METHODOLOGY: In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA) coated with: poly-L-lysine, basement membrane extract (BME), and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that: 1) untreated PCSA surfaces do not support attachment and growth of nerve cells, 2) a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3) three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4) laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration

    Genome-Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum tricornutum Reveal the Multilevel Regulation of Silicic Acid Transporters

    Get PDF
    BACKGROUND:Diatoms are largely responsible for production of biogenic silica in the global ocean. However, in surface seawater, Si(OH)(4) can be a major limiting factor for diatom productivity. Analyzing at the global scale the genes networks involved in Si transport and metabolism is critical in order to elucidate Si biomineralization, and to understand diatoms contribution to biogeochemical cycles. METHODOLOGY/PRINCIPAL FINDINGS:Using whole genome expression analyses we evaluated the transcriptional response to Si availability for the model species Phaeodactylum tricornutum. Among the differentially regulated genes we found genes involved in glutamine-nitrogen pathways, encoding putative extracellular matrix components, or involved in iron regulation. Some of these compounds may be good candidates for intracellular intermediates involved in silicic acid storage and/or intracellular transport, which are very important processes that remain mysterious in diatoms. Expression analyses and localization studies gave the first picture of the spatial distribution of a silicic acid transporter in a diatom model species, and support the existence of transcriptional and post-transcriptional regulations. CONCLUSIONS/SIGNIFICANCE:Our global analyses revealed that about one fourth of the differentially expressed genes are organized in clusters, underlying a possible evolution of P. tricornutum genome, and perhaps other pennate diatoms, toward a better optimization of its response to variable environmental stimuli. High fitness and adaptation of diatoms to various Si levels in marine environments might arise in part by global regulations from gene (expression level) to genomic (organization in clusters, dosage compensation by gene duplication), and by post-transcriptional regulation and spatial distribution of SIT proteins

    In vitro studies and preliminary in vivo evaluation of silicified concentrated collagen hydrogels

    Get PDF
    Hybrid and nanocomposite silicacollagen materials derived from concentrated collagen hydrogels were evaluated in vitro and in vivo to establish their potentialities for biological dressings. Silicification significantly improved the mechanical and thermal stability of the collagen network within the hybrid systems. Nanocomposites were found to favor the metabolic activity of immobilized human dermal fibroblastswhile decreasing the hydrogel contraction. Cell adhesion experiments suggested that in vitro cell behavior was dictated by mechanical properties and surface structure of the scaffold. First-to-date in vivo implantation of bulk hydrogels in subcutaneous sites of rats was performed over the vascular inflammatory period. These materials were colonized and vascularized without inducing strong inflammatory response. These data raise reasonable hope for the future application of silicacollagen biomaterials as biological dressings.Fil: Desimone, Martín Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Hélary, Christophe. Université Pierre et Marie Curie; FranciaFil: Quignard, Sandrine. Université Pierre et Marie Curie; FranciaFil: Rietveld, Ivo B. Universite de Paris; FranciaFil: Bataille, Clement. Université de Versailles Saint-quentin-en-yvelines.; FranciaFil: Copello, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Mosser, Gervaise. Université Pierre et Marie Curie; FranciaFil: Giraud Guille, Marie-Madeleine. Université Pierre et Marie Curie; FranciaFil: Livage, Jacques. Université Pierre et Marie Curie; FranciaFil: Meddahi Pellé, Anne. Université de Versailles Saint-quentin-en-yvelines.; FranciaFil: Coradin, Thibaud. Université Pierre et Marie Curie; Franci
    corecore