578 research outputs found

    Quantum fluctuations of D5dD_{5d} polarons on C60C_{60} molecules

    Full text link
    The dynamic Jahn-Teller splitting of the six equivalent D5dD_{5d} polarons due to quantum fluctuations is studied in the framework of the Bogoliubov-de Gennes formalism. The tunneling induced level splittings are determined to be 2T1u2T2u^2 T_{1u} \bigoplus ^2 T_{2u} and 1Ag1Hg^1 A_g \bigoplus ^1 H_g for C601C_{60}^{1-} and C602C_{60}^{2-}, respectively, which should give rise to observable effects in experiments.Comment: REVTEX 3.0, 13 pages, to be published in Phys. Rev.

    Unusual cause of mechanical ileus: abdominal cocoon syndrome

    Get PDF
    A 38-year-old black male patient was admitted with diarrhea and nausea over two days and aggravating pain in the meso- and epigastium that resolved after urination. He had no surgical history and only an episode of pulmonary tuberculosis five years earlier, for which he was properly treated. Physical examination revealed a tender and distended abdomen with clangorous sounds. His temperature was 36.1°C. Routine laboratory blood analyses were normal. An abdominal ultrasound revealed diffuse distention of the small intestine. A computed tomography (CT) scan showed a conglomerate of dilated small bowel loops in the meso- and hypogastrium, suggestive for a supravesical mechanical small bowel obstruction. Peritoneal thickening was seen in the right epigastrium (Figure A, white arrow). An explorative laparoscopy revealed a whitish, thickened membrane encapsulating the small bowels as a ‘cocoon’ (Figure B). Extensive adhesiolysis released an intestinal kinking in the lower abdomen, just above the bladder. No resection was needed. Histopathology of the membrane showed fibrocollagenous tissue with mixed inflammatory infiltrate

    Radiative transfer as a Bayesian linear regression problem

    Get PDF
    Electromagnetic radiation plays a crucial role in various physical and chemical processes. Hence, almost all astrophysical simulations require some form of radiative transfer model. Despite many innovations in radiative transfer algorithms and their implementation, realistic radiative transfer models remain very computationally expensive, such that one often has to resort to approximate descriptions. The complexity of these models makes it difficult to assess the validity of any approximation and to quantify uncertainties on the model results. This impedes scientific rigour, in particular, when comparing models to observations, or when using their results as input for other models. We present a probabilistic numerical approach to address these issues by treating radiative transfer as a Bayesian linear regression problem. This allows us to model uncertainties on the input and output of the model with the variances of the associated probability distributions. Furthermore, this approach naturally allows us to create reduced-order radiative transfer models with a quantifiable accuracy. These are approximate solutions to exact radiative transfer models, in contrast to the exact solutions to approximate models that are often used. As a first demonstration, we derive a probabilistic version of the method of characteristics, a commonly-used technique to solve radiative transfer problems

    A Sarcoma at the Site of Previous Extravasation of Adriamycin

    Get PDF
    We report the case of a 66-year-old man presenting with a high-grade pleomorphic sarcoma at the left elbow 16 years after the extravasation of adriamycin given for a malignant ifbrous histiocytoma of the tibia.We suggest that this sarcoma originated in a multistep way over many years, out of the chronic inflammatory tissue that developed due to a non-specific cellular damage at the nuclear level, interfering with normal cell replication necessary for normal healing tissue healing. As a result, the non-healed chronic inflammatory tissue transformed over several years into a preneoplastic mesenchymal tumour and later into a high-grade pleomorphic sarcoma

    Environmental controls on ozone fluxes in a poplar plantation in Western Europe

    Get PDF
    Tropospheric O-3 is a strong oxidant that may affect vegetation and human health. Here we report on the O-3 fluxes from a poplar plantation in Belgium during one year. Surprisingly, the winter and autumn O-3 fluxes were of similar magnitude to ones observed during most of the peak vegetation development. Largest O-3 uptakes were recorded at the beginning of the growing season in correspondence to a minimum stomatal uptake. Wind speed was the most important control and explained 44% of the variability in the nighttime O-3 fluxes, suggesting that turbulent mixing and the mechanical destruction of O-3 played a substantial role in the O-3 fluxes. The stomatal O-3 uptake accounted for a seasonal average of 59% of the total O-3 uptake. Multiple regression and partial correlation analyses showed that net ecosystem exchange was not affected by the stomatal O-3 uptake. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved

    Complete right-to-left shunt on lung perfusion SPECT results in the detection of a persistent left vena cava superior draining to the left atrium

    Get PDF
    In order to exclude acute pulmonary embolism, a lung perfusion scintigraphy was performed in a 53-year-old male, with a history of Fallot’s tetralogy. He had been immobilized because of a tibial fracture and complained of worsening chest pain and dyspnea

    Protocol for the DeFOG trial: A randomized controlled trial on the effects of smartphone-based, on-demand cueing for freezing of gait in Parkinson's disease

    Get PDF
    Background: Freezing of gait (FOG) is a highly incapacitating symptom that affects many people with Parkinson's disease (PD). Cueing triggered upon real-time FOG detection (on-demand cueing) shows promise for FOG treatment. Yet, the feasibility of implementation and efficacy in daily life is still unknown. Therefore, this study aims to investigate the effectiveness of DeFOG: a smartphone and sensor-based on-demand cueing solution for FOG. Methods: Sixty-two PD patients with FOG will be recruited for this single-blind, multi-center, randomized controlled phase II trial. Patients will be randomized into either the intervention group or the active control group. For four weeks, both groups will receive feedback about their physical activity using the wearable DeFOG system in daily life. In addition, the intervention group will also receive on-demand auditory cueing and instructions. Before and after the intervention, home-based assessments will be performed to evaluate the primary outcome, i.e., “percentage time frozen” during a FOG-provoking protocol. Secondary outcomes include the training effects on physical activity monitored over 7 days and the user-friendliness of the technology. Discussion: The DeFOG trial will investigate the effectiveness of personalized on-demand cueing in a controlled design, delivered for 4 weeks in the patient's home environment. We anticipate that DeFOG will reduce FOG to a greater degree than in the control group and we will explore the impact of the intervention on physical activity levels. We expect to gain in-depth insight into whether and how patients control FOG using cueing methods in their daily lives. Trial registration: Clinicaltrials.gov NCT03978507

    Combining oxytocin and cognitive bias modification training in a randomized controlled trial:Effects on trust in maternal support

    Get PDF
    Background and objectives: Research on the social effects of intranasal oxytocin in children is scarce. Oxytocin has been proposed to have clearer beneficial effects when added to social learning paradigms. The current study tested this proposition in middle childhood by assessing effects of cognitive bias modification (CBM) training and oxytocin on trust in maternal support. Methods: Children (N = 100, 8–12 years) were randomly assigned to one of two training conditions: CBM training aimed at increasing trust or neutral placebo training. Within each training condition, half the participants received oxytocin and half a placebo. Main and interaction effects were assessed on measures of trust-related interpretation bias and trust. We explored whether child characteristics moderated intervention effects. Results: Children in the CBM training were faster to interpret maternal behaviour securely versus insecurely. Effects did not generalize to interpretation bias measures or trust. There were no main or interaction effects of oxytocin. Exploratory moderation analyses indicated that combining CBM training with oxytocin had less positive effects on trust for children with more internalizing problems. Limitations: As this was the first study combining CBM and oxytocin, replication of the results is needed. Conclusions: This study combined a social learning paradigm with oxytocin in children. CBM training was effective at an automatic level of processing. Oxytocin did not enhance CBM effects or independently exert effects. Research in larger samples specifying when oxytocin might have beneficial effects is necessary before oxytocin can be used as intervention option in children

    Surprises in the Orbital Magnetic Moment and g-Factor of the Dynamic Jahn-Teller Ion C_{60}^-

    Full text link
    We calculate the magnetic susceptibility and g-factor of the isolated C_{60}^- ion at zero temperature, with a proper treatment of the dynamical Jahn-Teller effect, and of the associated orbital angular momentum, Ham-reduced gyromagnetic ratio, and molecular spin-orbit coupling. A number of surprises emerge. First, the predicted molecular spin-orbit splitting is two orders of magnitude smaller than in the bare carbon atom, due to the large radius of curvature of the molecule. Second, this reduced spin-orbit splitting is comparable to Zeeman energies, for instance, in X-band EPR at 3.39KGauss, and a field dependence of the g-factor is predicted. Third, the orbital gyromagnetic factor is strongly reduced by vibron coupling, and so therefore are the effective weak-field g-factors of all low-lying states. In particular, the ground-state doublet of C_{60}^- is predicted to show a negative g-factor of \sim -0.1.Comment: 19 pages RevTex, 2 postscript figures include

    Bio-energy retains its mitigation potential under elevated CO2

    Get PDF
    Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink
    corecore