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A B S T R A C T 

Electromagnetic radiation plays a crucial role in various physical and chemical processes. Hence, almost all astrophysical 
simulations require some form of radiative transfer model. Despite many innovations in radiative transfer algorithms and their 
implementation, realistic radiative transfer models remain very computationally expensive, such that one often has to resort to 

approximate descriptions. The complexity of these models makes it difficult to assess the validity of any approximation and to 

quantify uncertainties on the model results. This impedes scientific rigour, in particular, when comparing models to observations, 
or when using their results as input for other models. We present a probabilistic numerical approach to address these issues by 

treating radiative transfer as a Bayesian linear regression problem. This allows us to model uncertainties on the input and output 
of the model with the variances of the associated probability distributions. Furthermore, this approach naturally allows us to 

create reduced-order radiative transfer models with a quantifiable accuracy. These are approximate solutions to exact radiative 
transfer models, in contrast to the exact solutions to approximate models that are often used. As a first demonstration, we derive 
a probabilistic version of the method of characteristics, a commonly-used technique to solve radiative transfer problems. 

K ey words: radiati ve transfer – methods: numerical – methods: statistical. 
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 I N T RO D U C T I O N  

ight, or electromagnetic radiation in general, is a key component of
ur Universe. Not only does it dictate what we can or cannot observe,
t also has the ability to significantly affect numerous physical and
hemical processes ranging from radiative heating, cooling, and
ressure in hydrodynamics to various photo-reactions in chemistry.
s a result, almost every astrophysical simulation requires some form
f radiative transfer model. 
Ov er the years, man y different schemes have been devised to
odel radiative transfer, ranging from probabilistic Monte Carlo
ethods (see e.g. Noebauer & Sim 2019 , and the references therein),

o several types of formal solvers (see e.g. Kanschat et al. 2009 ;
e Ceuster et al. 2019 ; and the references therein). Despite many

mpro v ements in computational efficiency and the use of modern
omputer hardware, realistic radiative transfer models keep posing
 formidable computational challenge. Consequently, one often has
o resort to approximate descriptions of the radiation field, such as
ux-limited diffusion (see e.g. Moens et al. 2022 ), or parametrized
adiative heating and cooling functions (see e.g. Xia et al. 2018 ),
hich are often used in hydrodynamics models, or semi-analytical
escriptions of the photon flux, which are used in photo-chemistry
odelling (see e.g. Van de Sande & Millar 2019 ). Each of these

pproximate descriptions has its underlying assumptions and limita-
ions, and as models become larger and more complex, it becomes
 E-mail: frederik.deceuster@kuleuven.be 
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ncreasingly difficult to properly assess their validity, or to gauge the
otential impact of a certain approximation on the results. 
Every approximation induces uncertainty on the model result.

hese uncertainties can either be intrinsic to the model, for instance,
ue to the discretization of a continuous variable, or are due to the
ropagation of uncertainties through the model, for instance, due to
ncertainties in the radiative constants of the medium that are used in
he model. Currently, most radiative transfer models lack any form of
ncertainty quantification. This is a severe shortcoming that impedes
cientific rigour, in particular, when comparing these seemingly
xact model results to naturally noisy observations. In addition, as
bserv ations reach e ver higher spatial and spectral resolutions (see
.g. Decin et al. 2020 ), the model uncertainties become ever more
ele v ant. Moreo v er, with the dawn of a new era of emulated models
see e.g. de Mijolla et al. 2019 ; Holdship et al. 2021 ; Kasim et al.
022 ), in which algorithms are trained rather than programmed, and
imulation data is used as ground truth , it is crucial, more than ever,
o properly understand the uncertainties associated with simulations.
nfortunately, due to the computational complexity of radiative

ransfer and the requirement for many approximations it remains
ery challenging to provide proper uncertainty quantification for
ost astrophysical radiative transfer models. 
There is, ho we ver, an approach that can answer both to the need

or approximation, because of computational efficiency, and the need
or uncertainty quantification, for scientific rigour. Instead of starting
rom an approximate description, the idea is to start from a more
omplete description and approximate (or compress) it into a smaller,
ore tractable, model. There are two key advantages to this approach:
© 2022 The Author(s) 
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i) the approximation can be tailored to the problem at hand, and (ii)
he uncertainty induced by the approximation can be estimated by 
he information lost in compressing the model. 

In De Ceuster et al. ( 2020 ), it was already shown that typical
adiative transfer simulations of 3D hydrodynamics models, can 
ften be compressed by more than an order of magnitude in size,
ithout significant loss of accuracy, using a heuristic re-meshing 

lgorithm. This shows that accurate radiative transfer approximations 
an be obtained by compressing more precise models. It remains, 
o we ver, to quantify the uncertainties induced by compressing the 
odel and to have more rigorous means to guide the now only

euristic compression algorithm. 
In this paper, we propose a no v el approach to quantify uncer-

ainties, based on ideas from probabilistic numerics . Specifically, 
e introduce a new numerical method, referred to in the literature 

s a probabilistic numerical method (Hennig, Osborne & Girolami 
015 ; Hennig, Osborne & Kersting 2022 ), whose output is a
robability distribution o v er solutions to the problem. The mean 
f this distribution coincides with a traditional solution, while the 
ariance can be interpreted as an uncertainty or error measure. The 
dvantages of this probabilistic approach o v er e xisting methods are
hat: (i) since the output contains an intrinsic description of the 
pproximation error, that error can be controlled without the need 
o compute e xpensiv e and often conserv ati ve error measures, (ii)
s a full probability distribution, the description of error is richer 
han standard error measures, which typically constitute worst-case 
ounds on a global (i.e. norm-wise) or local error, and (iii) since the
pproximation error is expressed in a probabilistic manner, it can 
aturally be combined with other sources of uncertainty to provide 
 unified description of all uncertainty in the solution, as will be
emonstrated in Section 3.2.2 . These three points make probabilistic 
umerical methods particularly appropriate for modelling radiative 
ransfer, given the dire need for reliable uncertainty estimates on a 
omputationally e xpensiv e model in the presence of uncertainties on 
nput quantities such as radiative constants. 

In particular, we propose to treat radiative transfer as a Bayesian 
inear regression problem. The radiation field is modelled as the 
xpectation of a multi v ariate Gaussian probability distribution o v er
ossible solutions for the radiation field, conditioned on e v aluations 
f the radiative transfer equation and boundary conditions. As such, 
he variance of the conditioned distribution can be used as a measure
f uncertainty on this result. The computational complexity of the 
egression model can be controlled by the dimension of the feature 
pace, i.e. the number of basis functions that is used. This allows us
o create approximate (reduced-order) radiative transfer models, by 
educing the number of basis functions. 

The idea to treat function approximation or the solution of operator 
quations as a regression problem is certainly not new and can be
raced all the way back to Poincar ́e ( 1896 ), as pointed out by Diaconis
 1988 ). More recently, moti v ated by Hennig et al. ( 2015 ), these ideas
ained renewed interest and now form an active research domain 
n applied mathematics known as probabilistic numerics (see e.g. 
ockayne et al. 2019 ; Hennig et al. 2022 ). F or a comprehensiv e

ecent history, see e.g. Oates & Sulli v an ( 2019 ). The specific idea
o view the solution of operator equations as a Bayesian linear 
egression problem has been proposed several times, by several 
ifferent authors, and in several different contexts (e.g. van den 
oogaart 2001 ; Graepel 2003 ; Cockayne et al. 2017 ). While, in

he literature, this is usually derived from a Gaussian process, here, 
e take a slightly more general point of view. 
The probabilistic numerical method presented here is closely 

elated to finite element methods (see also e.g. Girolami et al. 2021 ).
n fact, the method just gives a probabilistic interpretation to an other-
ise classical collocation method (see e.g. Kansa 1990a , b ; Fasshauer
999 ). Finite element methods were introduced in the context of
strophysical radiative transfer by Dykema, Klein & Castor ( 1996 ),
ho applied it to the moments of the radiative transfer equation.
ince then, these methods have successfully been applied in several 
strophysical contexts (see e.g. Meier 1999 ; Richling et al. 2001 ;
or ̌c ́ako v ́a & K ub ́at 2003 ). Due to their widespread use, especially

n industry, there is a vast body of research dedicated to uncertainty
uantification for these methods (see e.g. Verf ̈urth 2013 , and the
eferences therein). Also in the astrophysical context, for instance, 
ichling et al. ( 2001 ) proposed an error measure on their finite
lement radiative transfer solver, which they furthermore used to 
dapt their discretization. The key difference between classical finite 
lement methods and the method presented here, is the probabilistic 
nterpretation of the results, i.e. here the solutions are (conditioned) 
robability distributions o v er the space of possible solutions, rather
han a single solution. This allows us to also take into account the
ncertainties on the model input, and furthermore facilitates the use 
f our model both in forward and inverse modelling pipelines. 
Alternatively, the method presented in this paper can be viewed 

s a linear (and hence analytically solvable) version of a physics-
nformed neural network method (see e.g. Lagaris, Likas & Fotiadis 
998 ; Lagaris, Likas & Papageorgiou 2000 ; Raissi, Perdikaris &
arniadakis 2019 ). This technique, inspired by machine learning, to 

olve, for instance operator equations, has already been successfully 
pplied to radiative transfer problems, for example by Mishra & 

olinaro ( 2021 ), who, furthermore, derived rigorous error bounds 
or their results (Mishra & Molinaro 2022 ). The assumption of
inearity makes our model much simpler than this, and allows us
o obtain analytic solutions which can be used, for instance, to relate
t directly to the commonly-used method of characteristics. 

The structure of this paper is as follows. In Section 2 , we
ntroduce Bayesian linear regression and show how it can be used
o solve linear operator equations in a way that naturally allows for
ncertainty quantification. In Section 3 , we apply this to radiative
ransfer. We show how reduced-order radiative transfer models can 
e obtained, and we derive a Bayesian version of the method of
haracteristics. Section 4 concerns future research towards practical 
mplementations, and we conclude with Section 5 . 

 M E T H O D S  

e present a probabilistic numerical method to solve linear operator 
quations by treating it as a (Bayesian) linear regression problem. 
his idea has already been discussed at length in the literature (see
.g. van den Boogaart 2001 ; Graepel 2003 ; Cockayne et al. 2017 ).
evertheless, we present it again, but in a slightly more general
ay, to demonstrate its full potential for astrophysical modelling, 

nd radiative transfer in particular. For a more comprehensive 
ntroduction, see e.g. Bishop ( 2006 ), Rasmussen & Williams ( 2006 ),
r Hennig et al. ( 2022 ). 

.1 Linear r egr ession 

he aim of a linear regression model is to approximate (or fit) a
unction, f , with a linear combination of basis functions, φi , based on
ata in the form of function e v aluations, ( x d , y d ≡ f ( x d )). In this paper,
e only consider real functions, so all variables are al w ays assumed

o be real. Given a set of N b basis functions, { φi } , and a set of N d data
oints, { ( x d , y d ) } , the approximation can either be expanded in terms
MNRAS 518, 5536–5551 (2023) 
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f the basis function or in terms of the data, resulting respectively in
he primal and dual formulation. 

.1.1 Primal formulation 

n the primal formulation, the approximation, ˜ f ( x), is modelled as a
inear combination of the basis functions, 

˜ 
 ( x) = 

N b ∑ 

i= 1 

w i φi ( x) ≡ w 

T φ( x) , (1) 

here we defined the weight vector, w , and basis function vector, φ.
ppropriate weights, w i , can be found, for instance, by minimizing

he regularized mean squared error between the model and the data, 

MSE ( w ) ≡ ∑ N d 
d= 1 

1 
σ 2 
d 

(
w 

T φ( x d ) − y d 
)2 + 

∑ N b 
i= 1 

(
w i 
λi 

)2 
. (2) 

he factors, σ−2 
d , weight the contributions of the different data

oints to the mean error, and are summarized in the diagonal matrix
≡ diag ( σd ). We also added a regularization term, characterized by

he diagonal matrix λ ≡ diag ( λi ), which penalizes the size of the
omponents of the weight vectors. This will guarantee the existence
f a unique solution, as we will see below. If we define the design
atrix, � di ≡ φi ( x d ), and the data vector pair, ( x , y ), equation ( 2 )

an conveniently be rewritten as 

MSE ( w ) ≡ (
σ−1 ( � w − y ) 

)2 + 

(
λ−1 w 

)2 
, (3) 

n which the square of a vector, a , is defined as ( a ) 2 ≡ a T a .
inimizing this regularized mean squared error by demanding a

anishing gradient with respect to the weights, w , yields (
� 

T σ−2 � + λ−2 
)
w min = � 

T σ−2 y , (4) 

n which w min is the weight vector that minimizes ( 3 ). The resulting
optimal) function approximation ( 1 ) is thus given by 

˜ 
 ( x) = y T σ−2 � 

(
� 

T σ−2 � + λ−2 
)−1 

φ( x) . (5) 

he inverse is guaranteed to exist as long as the regularization term
s non-zero, i.e. λi �= 0, ∀ i ∈ { 1, . . . , N b } . Note that a ( N b × N b )-
imensional linear system must be solved to obtain the approximate
olution, and hence the computational cost of the primal formulation
s determined by the number of basis functions, N b . 

.1.2 Dual formulation 

n the dual formulation, the approximation, ˜ f ( x), is modelled as a
inear combination of (e v aluations of a kernel function on) the data, 

˜ 
 ( x) = 

N d ∑ 

d= 1 

v d k( x d , x) ≡ v T k( x , x) , (6) 

n which the kernel is defined in terms of the basis functions, 

( x , x ′ ) ≡
N b ∑ 

i= 1 

φi ( x) λ2 
i φi ( x 

′ ) = φ( x) T λ2 φ( x ′ ) , (7) 

here we used the regularization parameter, λ, from equation ( 2 ).
his definition of the kernel ensures the correspondence between the
rimal and dual formulation (see also Section 2.1.3 ). Intuitively, the
ernel expresses how the solution hinges on the data points, x . From
his definition of the kernel, it can be seen that the weights of the
rimal and dual formulation are related as w = λ2 � 

T v . Also here, the
ppropriate weights can be obtained by minimizing the regularized
NRAS 518, 5536–5551 (2023) 
ean squared error. Keeping our previous definitions, the error ( 3 )
n terms of the new weights, v , reads 

MSE ( v ) ≡ (
σ−1 
(
� λ2 � 

T v − y 
))2 + 

(
λ� 

T v 
)2 

. (8) 

inimizing this regularized mean squared error by demanding a
anishing gradient with respect to the new weights, v , yields (
� λ2 � 

T σ−2 � λ2 � 

T + � λ2 � 

T 
)
v min = � λ2 � 

T σ−2 y , (9) 

n which v min is the weight vector that minimizes ( 8 ). Note that
 λ2 � 

T might not be invertible and thus equation ( 9 ) might not
ave a unique solution. Ho we ver, we can al w ays pick the uniquely
olvable system that will also minimize ( 8 ), by omitting the o v erall
actor, � λ2 � 

T σ−2 , which yields (
� λ2 � 

T + σ 2 
)
v min = y . (10) 

he resulting function approximation then reads 

˜ 
 ( x) = y T 

(
� λ2 � 

T + σ 2 
)−1 

k( x , x) . (11) 

ote that the inverse is guaranteed to exist as long as σ i �= 0, ∀ i ∈
 1, . . . , N d } . In this case, a ( N d × N d )-dimensional linear system
eeds to be solved to obtain the approximate solution, and thus, in
ontrast to the primal formulation, the computational cost of the dual
ormulation is determined by the number of data points, N d . 

Note that the dual formulation can also be constructed directly
rom a given kernel without any link to a set of basis functions. In
articular, the design matrix al w ays appears as, � λ2 � 

T = k( x , x ),
nd thus can al w ays be replaced by its equi v alent kernel expression.

.1.3 Primal versus dual formulation 

ne can show that the solutions of the primal ( 5 ) and dual ( 11 )
ormulation are equal. For this to be true, one needs to show that 

−2 � 

(
� 

T σ−2 � + λ−2 
)−1 = 

(
� λ2 � 

T + σ 2 
)−1 

� λ2 , (12) 

s is done in Appendix A1 . The only, yet key, difference between
oth formulations is thus the size of the linear system that needs to
e solved to obtain the solution. 

.1.4 Solving linear partial differential equations as linear 
 egr ession 

umerically solving linear operator equations, and in particular
inear partial differential equations (PDEs), can be viewed as a linear
egression problem. Say we want to numerically solve a PDE, 

L f ( x) = g( x) , x ∈ D 

 f ( x) = h ( x) , x ∈ ∂D (13) 

n a domain, D , with boundary, ∂D , where the PDE and boundary
onditions are determined respectively by the linear operators L and
 . Suppose that for the numerical solution the domain is discretized

o ˜ D , and that a is a vector containing the points in ˜ D , and the
oundary is discretized to ∂ ˜ D , and that b is a vector containing the
oints in ∂ ˜ D , then we can split the data as, 

 x , y ) = 

((
a 
b 

)
, 

(
g( a ) 
h ( b ) 

))
≡
((

a 
b 

)
, 

(
g 
h 

))
. (14) 

imilarly, we can split the matrix, σ , as, σ = diag ( σ L , σ B ), and the
esign matrix, � , which has function e v aluations at dif ferent data
oints on its rows, can be split as, 

 ≡
(

L φ ( a ) 
B φ ( b ) 

)
≡
(

� L 

� B 

)
. (15) 



Radiative transfer as r egr ession 5539 

I  

d

�

�

I

k

i  

t

f  

p
m  

k
e

t  

t  

h  

t  

p  

fi

2

T  

o
F  

e  

a  

f  

n  

w
a
t

2

G
w
e

p

N  

o
p  

b
a

p

N
o  

w
o

p

i

μ

�

S  

F

p

i

μ

σ

S  

t

μ

F  

a

σ

T  

o  

I  

s  

t  

H  

u
a

2

A  

t
R  

W  

(  

w

p

w  

d  

t

p

i

μ

σ

R  

s

μ

M  

a

σ

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/4/5536/6847232 by U
niversity C

ollege London user on 22 M
arch 2023
n this new notation, the key matrices appearing in the primal and
ual formulation can respectively be written as 

 

T σ−2 � + λ−2 = � 

T 
L σ

−2 
L � L + � 

T 
B σ

−2 
B � B + λ−2 (16) 

 λ2 � 

T + σ 2 = 

(
� L λ

2 � 

T 
L + σ 2 

L � L λ
2 � 

T 
B 

� B λ
2 � 

T 
L � B λ

2 � 

T 
B + σ 2 

L 

)
. (17) 

n terms of the kernel, equation ( 17 ) can also be rewritten as 

( x , x ) + σ 2 = 

(
L 1 L 2 k( a , a ) + σ 2 

L L 1 B 2 k( a , b ) 
B 1 L 2 k( b , a ) B 1 B 2 k( b , b ) + σ 2 

B 

)
, (18) 

n which the subscripts on the operators indicate whether they act on
he first or second argument of the kernel. 

As with linear regression, numerically solving the PDE can thus be 
ormulated as a minimization problem and can be solved both in the
rimal and dual formulation. The only difference is that the design 
atrix, � , should be redefined as in equation ( 15 ). This technique is

nown as the collocation method for solving operator equations (see 
.g. Fasshauer 1999 ; Schaback & Wendland 2006 ). 

Intuitively, this can be understood as follows. The weights for 
he solution of the linear operator equation ( 13 ) are determined in
erms of the basis functions, { φi } , by fitting the functions g ( x ) and
 ( x ), with the basis functions { L φi } and { B φi } respectively. Hence,
he basis functions should ideally be chosen such that { L φi } can
roperly fit g ( x ), { B φi } can properly fit h ( x ), and { φi } can properly
t the sought after solution function f ( x ). 

.2 Bayesian linear r egr ession 

he framework of linear regression can also be derived in a Bayesian
r probabilistic setting. Here we consider a stochastic function, 
 ( x ), giving a probability distribution o v er the possible results for
 very v alue, x , and are interested in the distribution of this function
s it is conditioned on observations of evaluations ( x , y ) of that
unction, i.e. our goal is to find p( F ( x) | y ). Note that, to simplify
otation further on, we write | y to denote conditioning on the data,
hereas we actually mean | ( x, y ). We summarized the definitions 

nd some further explanations of the statistical concepts that are used 
hroughout this and subsequent sections in Appendix A2 . 

.2.1 Bayesian primal formulation 

iven a linear model in the primal formulation with corresponding 
eights, w , a zero-mean Gaussian error on the observed function 
 v aluations, Y , results in a Gaussian likelihood given by 

 ( Y | w ) = N 

(
w 

T φ( x ) , σ 2 
) = N 

(
� w , σ 2 

)
. (19) 

ote that we reused the variable σ 2 and reinterpreted it as the variance
n the data, allowing for deviations from the mean value, � w , 
redicted by the model given the weights, w . We will see below that
oth interpretations are indeed compatible. Furthermore, we assume 
 zero-mean Gaussian prior on the stochastic weights, W , 

 ( W ) = N 

(
0 , λ2 

)
. (20) 

ote that we reused the variable λ2 and reinterpreted it as the variance 
f the prior on the weights. Using the relations given in Appendix A3 ,
e can infer that the implied distribution of the weights conditioned 
n the data is given by 

( W | y ) = N 

(
μw | y , � w | y 

)
, (21) 

n which the mean vector and covariance matrix are defined as 
w | y ≡ � w | y � 

T σ−2 y , (22) 

 w | y ≡ (
λ−2 + � 

T σ−2 � 

)−1 
. (23) 

ince the stochastic function, F ( x ), is a linear mapping of the weights,
 ( x) = W 

T φ( x), the conditioned distribution reads 

 

(
F ( x) | y ) = N 

(
μprimal ( x) , σ 2 

primal ( x) 
)

, (24) 

n which the mean and variance are defined as 

primal ( x) ≡ μT 
w | y φ( x) , (25) 

2 
primal ( x) ≡ φ( x ) T � w | y φ( x ) . (26) 

ubstituting equation ( 22 ), we redisco v er the primal solution ( 5 ) as
he mean of the resulting conditioned primal distribution, 

primal ( x) = y T σ−2 � 

(
� 

T σ−2 � + λ−2 
)−1 

φ( x) . (27) 

urthermore, we now also have a measure for the spread in possible
pproximations from the variance of the conditioned distribution, 

2 
primal ( x) = φ( x) T 

(
� 

T σ−2 � + λ−2 
)−1 

φ( x) . (28) 

his allows us to predict an approximation for the function, f , based
n the data, ( x , y ), and provide a confidence level for the result.
t should be noted that to compute the variance either for each x a
eparate ( N b × N b )-dimensional linear system needs to be solved, or
hat an ( N b × N b )-dimensional matrix needs to be inverted explicitly.
o we ver, since one usually does not require a high precision for an
ncertainty estimate, the matrix inverse can quickly be computed in 
n approximate way. 

.2.2 Bayesian dual formulation 

 similar argument can be made for the dual formulation and is
ypically encountered in the context of Gaussian processes (see e.g. 
asmussen & Williams 2006 ). Since we assumed that the weights,
 , and the errors (or spread) in the data, Y , both follow a zero-mean

multi v ariate) Gaussian distribution, the function values and the data
ill follow a joint (multivariate) Gaussian distribution, 

 

([
F ( x) 

y 

])
= N 

([
0 
0 

]
, 

[
k( x , x ) k( x, x ) 
k( x , x) k( x , x ) + σ 2 

])
, (29) 

here we reused the definition of the kernel ( 7 ). The posterior
istribution can be obtained by conditioning on the data ( x, y ), using
he relations given in Appendix A4 , 

 

(
F ( x) | y ) = N 

(
μdual ( x) , σ 2 

dual ( x) 
)
, (30) 

n which the mean and variance are respectively defined as 

dual ( x) ≡ k ( x, x ) 
(
k ( x , x ) + σ 2 

)−1 
y (31) 

2 
dual ( x) ≡ k( x , x ) − k( x, x ) 

(
k( x , x ) + σ 2 

)−1 
k( x , x) . (32) 

ewriting this in terms of the design matrix, we redisco v er the dual
olution ( 11 ) as expectation of the conditioned distribution, 

dual ( x) = φ( x) T λ2 � 

T 
(
� λ2 � 

T + σ 2 
)−1 

y . (33) 

oreo v er, we can similarly obtain a measure for the quality of the
pproximation from the variance of the conditioned distribution, 

2 
dual ( x ) = φ( x ) T 

(
λ2 − λ2 � 

T 
(
� λ2 � 

T + σ 2 
)−1 

� λ2 

)
φ( x ) . (34) 
MNRAS 518, 5536–5551 (2023) 
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gain, we can predict an approximation for the function, f , based
n the data, ( x , y ), and provide a confidence level for the result.
lso here, it should be noted that to compute the variance either for

ach x a separate ( N d × N d )-dimensional linear system needs to be
olved, or that an ( N d × N d )-dimensional matrix needs to be inverted
xplicitly. Ho we ver, as in the primal formulation, since one usually
oes not require a high precision for an uncertainty estimate, the
atrix inverse can quickly be computed in an approximate way. 

.2.3 Bayesian primal versus Bayesian dual formulation 

s in the non-Bayesian case, we note that in the primal formulation
 ( N b × N b )-dimensional linear system needs to be solved, while in
he dual formulation it is a ( N d × N d )-dimensional linear system. 

We already showed in the non-Bayesian case (Section 2.1.3 ) that
he primal and dual solutions are equal. Using the Woodburry matrix
dentity, we can now also easily verify that the variances for the
rimal and dual Bayesian formulation are equal, since, (
λ−2 + � 

T σ−2 � 

)−1 = λ2 − λ2 � 

T 
(
� λ2 � 

T + σ 2 
)−1 

� λ2 . (35) 

e can conclude that the duality also holds in the probabilistic sense,
hich implies for the probability distributions that 

 

(
μprimal ( x) , σ 2 

primal ( x) 
)

= N 

(
μdual ( x) , σ 2 

dual ( x) 
)
. (36) 

oth formulations are thus equi v alent and can therefore be used
nterchangeably, as long as they are both well defined. 

It should be noted that our choice of Gaussian priors was only
oti v ated by computational convenience, and that it is not ideal.
or instance, the Gaussian distribution al w ays assigns a non-zero
robability, also to ne gativ e v alues of a v ariable. F or man y physical
uantities that are only positive, such as density or temperature, this
s not desirable as it can lead to non-physical results. Ho we ver, this
s the case for many numerical schemes, and, bearing in mind these
angers, the Gaussian distribution is a good first approximation for
he uncertainties in our variables. 

The Bayesian linear regression problem can alternatively also
e formulated using other distributions for the priors (see e.g.
hah, Wilson & Ghahramani 2014 , for an example using Student-
 distributed priors), but al w ays at the expense of computational
onvenience. 

.2.4 The limit of uninformative data: σ → ∞ 

n order to gain more insight into these results, we consider some
imiting cases. In the limit of uninformative data, i.e. σ → ∞ , the
ncertainty on the data is so large that conditioning on them does not
hange the prior distribution. Hence, as can be seen by taking the
imit, σ → ∞ , in equations ( 27 , 28 , 33 , 34 ), one finds 

primal ( x) = μdual ( x) = 0 , (37) 

2 
primal ( x) = σ 2 

dual ( x) = φ( x) T λ2 φ( x) , (38) 

hich is exactly the zero-mean prior distribution that we assumed. 
A similar argument 1 can be made for the limit of perfect prior

nowledge, i.e. λ → 0 , when the confidence in the prior is so large
hat no conditioning on any data can change it. 
NRAS 518, 5536–5551 (2023) 

 The reason why a similar argument applies is the duality between the 
arameters σ and λ. For instance, in the simplified case that σ = σ1 and 
= λ1 , the parameter determining the behaviour of the model is σ / λ. 

i  

2

d

.2.5 The limit of perfect data: σ → 0 

n order to gain further insight into the results, let us ignore any
ffects that might be caused by uncertainties in the data and consider
he limit of perfect data, i.e. σ → 0 . The primal and dual solutions
n this limit are respectively given by 

primal ( x) → y T � 

(
� 

T � 

)−1 
φ( x) , (39) 

dual ( x) → y T 
(
� λ2 � 

T 
)−1 

� λ2 φ( x) . (40) 

ote that the inverses above do not necessarily exist. In particular, if
 d > N b , the singular v alue decomposition sho ws that � λ2 � 

T must
e singular and thus only the primal formulation remains, whereas
f N d < N b , it follows that � 

T � must be singular and thus only the
ual formulation remains. 2 As a result, in the limit σ → 0 , if N d �=
 b , the duality between the two formulations ceases to hold and only

he formulation with the smallest corresponding linear system will
ave a unique solution. 
Moreo v er, note that in this limit the variance of the primal

ormulation al w ays vanishes. As a result, there is no probabilistic
nterpretation in the limit of perfect data when N d > N b and only
he primal formulation remains. Intuitively, this can be understood
ince, in general, a linear regression model using N b basis functions
annot perfectly fit N d data points. Hence, the assumption that the
ata can be fit perfectly, will, in general, be wrong. The uncertainty
n the data, i.e. σ �= 0 , is required to allow for some slack in fitting
he N d data points with only N b basis functions. 

Similarly, in the dual formulation, the variance in the limit of
erfect data, i.e. σ → 0 , reads 

2 
dual ( x) = φ( x) T 

(
λ2 − λ2 � 

T 
(
� λ2 � 

T 
)−1 

� λ2 

)
φ( x) , (41) 

hich evidently only makes sense if the inverse of � λ2 � 

T exists,
hich requires that N d ≤ N b . In the particular case that N d = N b ,
emanding that � λ2 � 

T is invertible implies that � is invertible,
uch that also in this case the v ariance v anishes. Hence, in the
imit of perfect data there is only a probabilistic interpretation if
 d < N b , assuming that the inverse for � λ2 � 

T exits. Intuitively this
an be understood from the fact that we model the spread in the
istribution with the same basis functions as we use to model the
unction approximation. If we assume the data to be exact and if N d 

N b , the contributions of all basis functions are fixed by the data
nd there are no undetermined degrees of freedom that can cause a
pread in the resulting distribution conditioned on the data. 

A similar argument can be made for the limit of uninformative
rior knowledge, i.e. λ → ∞ , when the uncertainty in the prior is so
arge that the regression essentially fully depends on the data. 

.3 Uncertainty quantification 

uantifying uncertainties is an approximate endea v our. After all, the
xact solution, f , is required in order to determine the exact error, ε,
hat is made in a function approximation, ˜ f , since, 

 ( x) = 

˜ f ( x) + ε( x) . (42) 

lthough it is possible to obtain highly accurate estimates for the
rrors in particular models (see e.g. Oberkampf & Roy 2010 ), it
s crucial to note that any form of practical on-the-fly uncertainty
 Note, ho we v er, that the e xistence of the inv erses of � λ2 � 

T and � 

T � still 
epends on the choice of basis functions and the positions of the data points. 
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uantification will al w ays only be an approximation for the true
rror. Just as the quality of the approximation highly depends on the
stimation method, so does the quality of the error. 

.3.1 Uncertainty in the probabilistic numerical paradigm 

ollowing the probabilistic numerical paradigm (Hennig et al. 2015 ; 
ockayne et al. 2019 ; Hennig et al. 2022 ), we aim to quantify the
ncertainty in the solution of linear operator equations by modelling 
he distribution o v er possible solutions conditioned on the data. In
articular, we will use the expectation of the conditioned distribution 
s our function approximation, 

˜ 
 ( x) ≡ E [ F ( x) | y ] . (43) 

s a result, we can estimate the expected squared error in this
pproximation with the variance of the conditioned distribution, 

˜  2 ( x) ≡ V [ F ( x) | y ] . (44) 

his can be inferred from the fact that the stochastic function, F ( x ),
ith corresponding stochastic error, E( x), ought to be related as 

 ( x) = 

˜ f ( x) + E( x) , (45) 

nd the definition of the variance, which implies that 

 [ F ( x) | y ] = E 

[ (
F ( x) − ˜ f ( x) 

)2 | y 
] 

= E 

[
E( x) 2 | y ] . (46) 

ssuming that the probabilistic model, F ( x) | y , is an adequate
odel for the actual function, f ( x ), the variance thus quantifies the

xpected squared error in the function approximation. Note that in 
ur particular case, where the posterior is a Gaussian, the variance 
oes not depend on the function values, y , of the data but only on
he locations at which the function was e v aluated, x . 

Based on the variance in the dual formulation ( 32 ), one can derive
n upper and lower bound on the expected squared error, 

 ≤ ˜ ε 2 ( x) ≤ k( x, x) , (47) 

here, in the left inequality, we used that the variance has to be
ositive and in the right inequality that k( x , x ) + σ 2 is a positive
efinite matrix, such that the second term in ( 32 ) is al w ays ne gativ e.
t might seem odd to have an error measure that is bounded from
bo v e. Ho we ver, one should note that it is not an upper bound on the
ctual error, but rather an upper bound on the expected error. 

There is an alternative way to understand the error measure defined 
n ( 44 ) using the reproducing kernel Hilbert space (RKHS) of the
ernel (see e.g. Cockayne et al. 2017 ). Let H denote the RKHS of
he kernel defined in ( 7 ), with an associated inner product, 〈〉 H 

, and
orm ‖ · ‖ H 

≡ √ 〈·, ·〉 H 

. If we now consider the projection Pf ∈ H
f the function, f , in the RKHS, H, one can derive the following
ound (see Appendix A5 ), ∣∣Pf ( x) − ˜ f ( x) 

∣∣ ≤ ‖ Pf ‖ H 

˜ ε ( x) . (48) 

his means that ̃  ε ( x) bounds the local error in the approximation, ˜ f ,
s measured in the RKHS. To intuitively see how this comes about
ithout needing the notion of a RKHS, note that if the function

hat one tries to approximate is f ( x ) = k ( x , x ), based on the data y
 k ( x , x ), then the v ariance ( 32 ) is exactly equal to the dif ference

etween f , and its approximation ( 31 ). Now if the function one tries
o approximate is not k ( x , x ), but a linear combination of e v aluations
f k ( x , x ), this difference can grow by an additional factor which can
e bounded by ‖ Pf ‖ H 

, yielding the bound ( 48 ). 
It should be emphasized that inequality ( 48 ) only bounds the error

n the approximation with respect to the projection of the true solution 
n the RKHS, Pf , and not the error with respect to the true solution,
 , itself. Hence, the strength of this bound crucially depends on the
KHS, and thus on the particular kernel, or equi v alently, on the
articular set of basis functions that is used. If the projection, Pf , in the
KHS is a good approximation for the true function, f , then the error
ound ( 48 ) can also be used to bound the true error in equation ( 42 ).
o we ver, this assumes a certain regularity of the function, f , and

gain crucially depends on the particular choice of kernel or basis
unctions. 

If { φi } is a finite and orthonormal set of square-integrable basis
unctions on some domain, D , i.e. 〈 φi , φj 〉 ≡

∫ 
D φi φj = δij , then

he function space spanned by these basis functions is a RKHS, say
, with reproducing kernel ( 7 ), with respect to the following inner

roduct. Since every function in the RKHS can be expressed as a
inear combination of the basis functions, the inner product between 
( x) = g T φ( x) ∈ H and h ( x) = h 

T φ( x) ∈ H can be defined as
 g, h 〉 H 

≡ g T λ−2 h . Hence, for a finite set of orthonormal basis
unctions, it is this inner product that must be used to compute the
orm in the local error bound ( 48 ). 

.4 Example basis functions and kernels 

iven the data, the key parameters that determine the regression 
odel are the set of basis functions or the kernel in the primal and

ual formulation respectively. In order to gain more insight into the
inear regression method, we consider some specific examples of 
asis functions and their corresponding kernels. 

.4.1 Fourier basis 

s a first example, consider the set of N b = 2 N + 1 real Fourier basis
unctions, { 1 } ∪ { sin ( ω n x) } N n = 1 ∪ { cos ( ω n x) } N n = 1 , where we defined
 n ≡ 2 πn / L , with L the size of the domain that we are interested in.
iven these basis functions, the primal representation of the function 

pproximation ( 5 ) corresponds to the (truncated) Fourier series of
he function that we are looking for. If we denote the entry in λ
orresponding to the constant with λ, the entries corresponding to 
he sines with λn , and the entries corresponding to the cosines with
′ 
n , the resulting kernel can be expanded as 

( x , x ′ ) = λ2 + 

N ∑ 

n = 1 

( 

λ2 
n + λ

′ 2 
n 

2 

) 

cos 
(
ω n ( x − x ′ ) 

)

+ 

N ∑ 

n = 1 

( 

λ2 
n − λ

′ 2 
n 

2 

) 

cos 
(
ω n ( x + x ′ ) 

)
. (49) 

ypically, one would expect that modes corresponding to the same 
ength scale, i.e. same n , would have similar weights, λn ≈ λ′ 

n , such
hat the second summation vanishes. This approximately renders the 
ernel into a radial basis function k ( x , x 

′ 
) ≈ K ( ‖ x − x 

′ ‖ ). 
Now consider the simplest case, when all λn = λ′ 

n = λ. The kernel
s then a radial basis function and can be computed explicitly, 

( x , x ′ ) = 

λ2 

2 

(
1 + 

sin 
(

π(2 N + 1)( x −x ′ ) /L 
)

sin 
(

π( x −x ′ ) /L 
) )

, (50) 

hich is commonly known as (one half plus) the Dirichlet kernel.
he kernel attains its maximum on the diagonal, k ( x , x ) = λ2 ( N + 1),
nd oscillates and decays away from there. The dual solution ( 11 ) is
 linear combination of these radial basis functions centred, and thus
eaking, around the data points, and decaying away elsewhere. 
Note that, as the number of basis functions increases, N → ∞ ,

he kernel becomes more narrow and peaked, and in the limit tends
MNRAS 518, 5536–5551 (2023) 
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owards a delta distribution. Since the kernel centred around a data
oint represents the influence of that data point on the solution, this
mplies that with increasing N , the effect of each individual data
oint on the solution decreases and becomes ever more confined to a
hrinking region around each data point. Similarly, with increasing
 , the variance (or corresponding uncertainty estimate) in between
ata points will increase. Intuitively, this can be understood, since
ncreasing the number of basis functions, while keeping the number
f data points fixed, will imply that the basis functions are ever
ess constrained by the data, a problem commonly known as 
 v er-fitting. 
Over-fitting can be cured with regularization by damping the

igher order modes in the kernel through λ, making it less peaked
n the limit of large N . Note that the entries of the regularization
ector, λ, appear as the Fourier coefficients of the kernel ( 49 ). This
llustrates the crucial interplay between the choice of basis functions
nd regularization. In a sense, regularization ef fecti vely comes down
o re-scaling the basis functions, since by making the re-scaling, φi 

 λi φi , the regularization vector can al w ays be cast into the trivial
orm λ = 1 . 

The Fourier basis allows us to restrict the desired solution of
he regression problem to a minimal length scale, defined by L / N .
herefore, by considering only a limited number of basis functions,
 b � N d , one can obtain a large-scale ( L / N ) approximation for the
odel, which can efficiently be solved in the primal formulation, as

t only requires the solution of an ( N b × N b )-dimensional system. 
A potential problem with the Fourier basis is that the ef fecti ve

idth, ξ , of the kernel ( 49 ), which can be estimated as, ξ ∼ L / N ,
s the same around every data point. This is fine as long as the
istance between the data points, x , is much smaller than the ef fecti ve
idth of the kernel, but causes problems, for instance, if there are

lonely’ data points whose nearest neighbours are much farther away
han the ef fecti ve width of the kernel. Since the kernel rapidly
ecays for length scales beyond its ef fecti ve width, the solution
round a so-called ‘lonely’ data point, say x l , can be approximated 
s, 

˜ 
 ( x) = v T k( x , x) ≈ v l k( x l , x) , (51) 

hich holds, as long as x is much closer to x l than to its nearest
eighbour, say x n l , i.e. ‖ x − x l ‖ � ‖ x − x n l ‖ . Since the nearest
eighbour is much farther away than the ef fecti ve width of the kernel
by definition of a ‘lonely point’), there is a significant region around
 l , defined by { x : ξ < ‖ x − x l ‖ � ‖ x − x n l ‖} , for which, 

˜ 
 ( x) ≈ 0 . (52) 

imilarly, the variance (or uncertainty estimate) for the function
pproximation in that region will attain its maximum value, 

˜  2 ( x) ≈ k( x, x) = λ2 ( N + 1) . (53) 

ence, the approximation is probably not good in that region. This
ype of problem can be a v oided by choosing basis functions or a
ernel that is locally adapted to the distribution of data points. 

.4.2 Radial basis functions 

s a second example, consider a set of basis functions generated by
 radial basis function, ψ , centred around each data point, x i , such
hat there is one basis function, φi for each data point x i , with, 

i ( x) = ψ 

(‖ x − x i ‖ 
ξi 

)
, (54) 
NRAS 518, 5536–5551 (2023) 
n which ξ i controls the ef fecti ve width of the radial basis function
round data point, x i . The corresponding kernel for this basis reads 

( x , x ′ ) = 

∑ N b 
i= 1 ψ 

(
‖ x−x i ‖ 

ξi 

)
λ2 

i ψ 

(
‖ x ′ −x i ‖ 

ξi 

)
. (55) 

ssues with ‘lonely’ data points as encountered with the Fourier basis
an be a v oided here by tailoring the basis functions to the data, for
nstance, by choosing ξi = ‖ x i − x n i ‖ , in which x n i is the nearest
eighbour of x i . 
Radial basis functions are a popular choice for solving operator

quations. Although, often, some care is required to cope with the
ll-conditioning of the resulting linear system (see e.g. Fornberg &
lyer 2015 ). Moreo v er, radial basis functions often of fer an intuiti ve

nterpretation. For instance, when dealing with smoothed-particle
ydrodynamics data (Gingold & Monaghan 1977 ; Lucy 1977 ), the
asis functions can be related to the smoothing kernels and represent
he proliferation of the data from each particle. 

Since, in this approach, the basis functions are tied to the data
oints, approximating the solution around certain data points can
e achieved by discarding the corresponding basis functions. In De
euster et al. ( 2020 ), a mesh reduction method for radiative transfer
odels was proposed in which, based on a certain heuristic, data

oints which were not deemed essential were discarded from the
odel. A similar but impro v ed reduction scheme can be obtained

sing the linear regression approach with basis functions tied to the
ata, by discarding the corresponding basis functions instead. In this
ay, the data itself does not have to be discarded and can still be

aken into account, while the model is reduced in computational
omplexity. Furthermore, the Bayesian linear regression method can
rovide an estimate for the uncertainty on the result after solving the
educed model. This leads us to the question whether there are even
etter bases to compress radiative transfer models. 

.4.3 Wavelet bases 

a velets ha ve a proven track record for data compression in various
pplications, such as sound and image processing (see e.g. Vetterli
001 ), and have already successfully been applied to solve operator
quations (see e.g. Stevenson 2009 , and the references therein). They
ombine the localization in scale of the Fourier basis, i.e. certain basis
unctions describe certain length scales, with the localization in space
f radial basis functions, i.e. certain basis functions describe certain
egions in space. As a result, wavelet bases are of the form, 

 mn ( x) = a −m/ 2 ψ 

(
x − nb 

a m 

)
, (56) 

nde x ed by two indices, in which m describes the length scale,
nd n describes the location, parametrized by the constants a
nd b respectively. By imposing the mathematical structure of a
ultiresolution analysis, relations between the different scales can

e derived which allow one to construct orthogonal wavelet bases,
hich give rise to efficient algorithms to decompose functions into

heir wavelet components (see e.g. Daubechies 1992 ). 
By selecting (or disregarding) certain wavelet basis functions

e thus can locally refine (or coarsen) the solution of the linear
egression problem. Ho we ver, this assumes that we know where we
ant to refine the model and where a coarser representation suffices.
lternativ ely, by e xpressing the data directly in a wav elet basis (e.g.
sing a fast wavelet transform), one can select only those components
hat significantly contribute (see e.g. Daubechies 1992 ). 

There is a large variety of wavelet bases and the key remains
o choose an appropriate one. Moreo v er, when the aim is to solve
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perator equations, the wavelet basis should still be appropriate when 
cted upon with the rele v ant operator. Choosing appropriate wavelet 
ases adapted to a particular operator turns out to be a challenging
ndea v our (see e.g. Stevenson 2009 ). Ho we ver, recently, significant
rogress has been made, for instance, by Owhadi ( 2017 ), which
ak es w avelet bases an attractive choice for solving large (Bayesian)

inear regression problems (see also Section 4 ). 

 BAYESIAN  R A D I AT I V E  TRANSFER  

e can now apply the probabilistic numerical approach developed 
bo v e to the particular case of radiative transfer problems. The
oal is to find the radiation field throughout a region, based on the
adiative properties of the medium and some boundary conditions. 
he radiation field can be described by the specific monochromatic 

ntensity, I ν( x , ̂  n ), i.e. the energy at a point, x , transported in a
irection, ˆ n , in a certain frequency bin, ν. Interactions between 
he radiation field and the medium can be described in terms of
he change they imply in the specific monochromatic intensity. The 
adiative transfer equation is a linear operator equation that relates 
his change to the radiative properties of the medium, 

 I ν( x, ̂  n ) = ην( x) , (57) 

n which, ην( x ), is the emissivity of the medium. In the time-
ndependent case and including scattering, the operator, L , acts on 
he intensity as (see e.g. Mihalas & Weibel-Mihalas 1984 ), 

 I ν( x, ̂  n ) ≡
(
χν( x) + ˆ n · ∇ 

)
I ν( x, ̂  n ) 

−
∮ 

d �′ 
∫ ∞ 

0 
d ν ′ � νν′ 

(
x, ̂  n , ̂  n ′ 

)
I ν′ ( x, ̂  n ′ ) . (58) 

ere, we introduced the opacity, χν( x ), and the scattering redis-
ribution function, � νν′ 

(
x, ̂  n , ̂  n ′ 

)
. Since L is a linear operator, 

he solution of the radiative transfer equation, given appropriate 
oundary conditions, can be viewed as a Bayesian linear regression 
roblem. It remains to find an appropriate set of basis functions (in
he primal formulation), or to find an appropriate kernel (in the dual
ormulation), given the radiative properties of the medium. 

.1 Approximate radiati v e transfer models 

lmost all astrophysical simulations require some kind of radiative 
ransfer model. Ho we ver, due to the significant computational cost, 
ne is often forced to make drastic approximations. In this section, 
e show how the primal formulation can be used to create reduced-
rder or approximate radiative transfer models and show how it can 
e applied, for instance, to compute approximated Lambda operators 
or atomic and molecular line transfer. 

.1.1 Reduced-order models 

s already alluded to in Section 2.4 , we can obtain approximate
olutions for a linear regression problem by considering reduced sets 
f basis functions in the primal formulation. The basis functions 
ssentially map the regression problem to an N b -dimensional feature 
pace in which the problem is solved. Therefore, in a sense, the
rimal solution ( 5 ) can be interpreted as follows: 

˜ 
 ( x) = y T σ−2 � ︸ ︷︷ ︸ 

compress 

(
� 

T σ−2 � + λ−2 
)−1 ︸ ︷︷ ︸ 

solve 

φ( x) ︸ ︷︷ ︸ 
decompress 

. (59) 

irst, the N d -dimensional data vector, y , is mapped into the N b -
imensional feature space, which can be viewed as a projection or
ompression, if N b < N d . Then, the problem is solved in the N b -
imensional feature space, and finally mapped back into the desired 
ormat. The least-squares problem posed in equation ( 3 ) minimizes
he compression loss. The resulting reduced-order model provides an 
pproximate solution to the (more) exact radiative transfer problem, 
n contrast to the exact solutions to approximate models that are
ften used. Moreo v er, the probabilistic interpretation allows us to
uantify with the variance ( 28 ) the uncertainty that was introduced
y compressing the model, allowing us to strictly control the trade-off 
etween accuracy and computational cost. 

By denoting the first part of equation ( 59 ) as a compression of
he data, one could ask whether the vector-matrix multiplication in 
quation ( 59 ) is the most efficient way to perform this compression.
ndeed, for the Fourier and wavelet bases there exist more efficient
lgorithms to express a given data set into these bases, the so-
alled Fast Fourier Transform (FFT) and Fast Wavelet Transform 

FWT), respectively (see e.g. Press et al. 2007 ). These can reduce
he computational cost of these models even further. 

The type and amount of compression critically depends on the set
f basis functions that is used. One way to choose them, for instance,
s by performing a principle component analysis on the design matrix, 
 . This yields what is known as a proper orthogonal decomposition

POD; see e.g. Benner et al. 2017 ). In addition to performing this
ompression, the probabilistic approach now also allows to quantify 
he uncertainties that are thus introduced. 

.1.2 Application: approximate Lambda operators 

pproximations to radiative transfer are often used to accelerate 
terati ve line radiati ve transfer solvers. Models involving atomic or
olecular line radiative transfer show a non-linear coupling between 

he radiative properties of the medium and the radiation field. This
oupling can be expressed as 

 = � [ η ( I ) ] , (60) 

n which I indicates the radiation field, � is a linear operator, and we
xplicitly indicated the dependence of η on the radiation field. It is
his dependency of η on I that is usually non-linear. Due to this non-
inear coupling, the radiation field has to be computed in an iterative
ay, (see e.g. chapter 13 in Hubeny & Mihalas 2014 ), 

 

( n + 1) = � 

[
η
(
I ( n ) 
)]

. (61) 

his iterative scheme often shows notoriously slow convergence and 
ne often has to resort to acceleration techniques, such as operator
plitting (Cannon 1973a , b ), which yields the implicit scheme, 

 

( n + 1) = � 

∗ [η (I ( n + 1) 
)] + 

(
� − � 

∗) [η (I ( n ) )] , (62) 

n which the linear operator, � 

∗, is an approximation for the operator,
 , that can easily be inverted (see e.g. Rybicki & Hummer 1991 , for
 specific implementation). Intuitively, the better the approximation, 
 

∗, the smaller the dependence on the previous iteration in ( 62 ),
nd thus the better convergence will be. The key to success in this
cceleration scheme is to find a good approximate operator, � 

∗. 
Comparing equations ( 5 ), ( 57 ), and ( 60 ), one can see that, in the

rimal formulation, the operator, � , in matrix form is given by 

 = φ( x) T λ2 � 

T 
(
� λ2 � 

T + σ 2 
)−1 

. (63) 

s a result, good approximations to this operator can be obtained,
or instance, by considering reduced sets of basis functions in the
orresponding linear regression problem, as shown in Section 3.1.1 . 
MNRAS 518, 5536–5551 (2023) 
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.2 Method of characteristics 

n order to make the probabilistic approach to radiative transfer
ore concrete, we consider the specific example of the method of

haracteristics and derive it from a Bayesian point of view. 
In its simplest form, in the absence of scattering and neglecting

n y frequenc y dependence, the time-independent radiativ e transfer
quation along a single ray reads 

 s I ( s) = η( s) , (64) 

n which the linear differential operator, L s , is defined as 

 s ≡ χ ( s) + ∂ s . (65) 

or future reference, we already note that the Green’s function for
his linear operator, L s , is given by 

 ( z, s) = � ( s − z) e −τ ( z, s) , (66) 

n which � is the Heaviside function, and the optical depth, τ , o v er
n interval [ z, s ] along the ray, is defined as 

( z, s) ≡
∫ s 

z 

d s ′ χ ( s ′ ) , (67) 

uch that ∂ s τ ( z, s) = χ ( s), and thus, as expected, 

 s G ( z, s) = δ( s − z) . (68) 

sing this Green’s function one can (at least formally) solve the
adiative transfer equation, as in the method of characteristics. 

.2.1 Classical method of c har acteristics 

he method of characteristics solves the transfer equation starting
rom its formal solution based on the Green’s function. Given the
oundary condition, I ( s 0 ) = I 0 , at boundary point, s 0 , one finds 

 ( s) = I 0 e 
−τ ( s 0 ,s) + 

∫ s 

s 0 

d s ′ η( s ′ ) e −τ ( s ′ ,s) . (69) 

he required integrals in equations ( 67 ) and ( 69 ) are then e v aluated
sing a (local) interpolation both for the emissivity and opacity
unctions, η( s ) and χ ( s ). 

At this point, a distinction is often made between so-called short
nd long characteristic methods depending on the location of the
oint s 0 in the discretization. In the case of short characteristics, s 0 
s taken to be the previous point in the discretization, while, in the
ase of long characteristics, it is taken to be the boundary of the
omputational domain. For our intents and purposes this distinction
oes not matter, so we continue with the formulation in ( 69 ), in which
 0 can be any point in the discretization. 

The emissivity and opacity are usually interpolated using a linear
cheme. Given a kernel, κ , the interpolant ( 11 ) in the dual formulation
an be written as 

˜ ( s) ≡ ηT 
(
κ( a , a ) + σ 2 

η

)−1 
κ( a , s) , (70) 

˜ ( s) ≡ χT 
(
κ( a , a ) + σ 2 

χ

)−1 
κ( a , s) , (71) 

n which a is the vector of positions at which the values for η and χ
re given, and where σ 2 

η and σ 2 
χ denote the diagonal matrices with

he variances for the given values of η and χ respectiv ely. Howev er,
n the classical method of characteristics, these variances are never
sed, and thus implicitly assumed to be negligible. In the Bayesian
ethod of characteristics, ho we v er, the y model the uncertainties in

he emissivities and opacities that originate, for instance, from the
ncertainties in the radiative data (see Section 3.2.2 ). Furthermore,
NRAS 518, 5536–5551 (2023) 
e note that, in principle, one can use a different kernel for η and χ ,
lthough, in practice, one often uses the same one. One particularly
opular choice of kernel is the one corresponding to the basis of
agrange polynomials, since they trivially satisfy the interpolation
roperty. With equations ( 70 ) and ( 71 ), the formal solution yields 

˜ 
 ( s) = I 0 e 

− ˜ τ ( s 0 ,s) + ηT K 

−1 
η

∫ s 

s 0 

d s ′ κ( a , s ′ ) e − ˜ τ ( s ′ ,s) (72) 

n which the interpolated optical depth is given by 

˜ ( z, s) = χT K 

−1 
χ

∫ s 
z 

d s ′ κ( a , s ′ ) , (73) 

here, for brevity, we defined the matrices K η ≡ κ( a , a ) + σ 2 
η, and

 χ ≡ κ( a , a ) + σ 2 
χ . The integrals in equations ( 72 ) and ( 73 ) can

o w be e v aluated on the (analytically) known kernel function, κ ,
hus solving the radiative transfer equation. 

.2.2 Bayesian method of c har acteristics 

o w we sho w ho w the method of characteristics can be derived
s a Bayesian linear regression problem in the dual formulation by
hoosing a particular type of kernel, or equi v alently by choosing a
articular set of basis functions. 
Given the Green’s function ( 66 ) for the differential operator in the

adiative transfer equation, consider a kernel of the form, 

( z, s) = 

∫ +∞ 

−∞ 

d s ′ 
∫ +∞ 

−∞ 

d z ′ κ( s ′ , z ′ ) G ( z ′ , z) G ( s ′ , s) , (74) 

n which κ( s 
′ 
, z 

′ 
) is another kernel from which we only demand that

t does not correlate the region s > s 0 with s < s 0 . The reason for this
s, that, in the classical method of characteristics, we want to use the
olution at s 0 as a true boundary condition, i.e. such that nothing at
 > s 0 affects the solution at s < s 0 , and vice versa. This implies a
lock diagonal kernel of the form, 

( z, s) ≡ � ( s 0 − z) � ( s 0 − s ) κ( z, s ) 

+ � ( z − s 0 ) � ( s − s 0 ) κ( z, s) . (75) 

f we now assume that ∀ a ∈ a : a > s 0 , and we assume no error on
he boundary condition, one can show (see Appendix A6 ) that the
ual solution for the Bayesian linear regression problem reads 

˜ 
 ( s) = I 0 e 

− ˜ τ ( s 0 ,s) + ηT K 

−1 
η

∫ s 

s 0 

d s ′ κ( a , s ′ ) e − ˜ τ ( s ′ ,s) (76) 

ith the corresponding uncertainty estimate given by 

˜  2 I ( s) = 

∫ s 

s 0 

d s ′ 
∫ s 

s 0 

d z ′ e − ˜ τ ( s ′ , s) e − ˜ τ ( z ′ , s) 

× (κ( s ′ , z ′ ) − κ( a , s ′ ) T K 

−1 
η κ( a , z ′ ) 

)
. (77) 

ote that the probabilistic solution ( 76 ) is exactly the same as the
lassical solution ( 72 ) for the method of characteristics. Therefore,
e can conclude that both methods are equi v alent, but with the

mportant difference that the probabilistic approach can account for
ncertainties on the input (through σ η) and we thus can estimate
he uncertainty on the result. Moreo v er, in the e xpression between
arentheses in equation ( 77 ), 

( s ′ , z ′ ) − κ( a , s ′ ) T K 

−1 
η κ( a , z ′ ) (78) 

e recognize the resulting variance in the dual formulation ( 32 ) that
tems from the interpolation of the emissivity ( 70 ). 

We should note that in the definition of the kernel ( 74 ), we
mplicitly assumed that we knew the Green’s function ( 66 ), and
hus we implicitly assumed that we knew the optical depth ( 67 ). In
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eneral, we do not have an exact expression for the optical depth.
o we ver, we can find an approximate solution by solving another
ayesian linear regression problem for the operator equation, 

 s τ ( z, s) = χ ( s) , (79) 

ith boundary condition, τ ( z , z ) = 0, which, using the kernel, 

( z, s) = 

∫ +∞ 

−∞ 

d s ′ 
∫ +∞ 

−∞ 

d z ′ κ( s ′ , z ′ ) , (80) 

nsurprisingly, yields the expected solution, 

˜ ( z, s) = χT K 

−1 
χ

∫ s 
z 

d s ′ κ( a , s ′ ) , (81) 

ith the corresponding uncertainty estimate given by 

˜  2 τ ( z, s) = 

∫ s 

z 

d s ′ 
∫ s 

z 

d z ′ 

× (κ( s ′ , z ′ ) − κ( a , s ′ ) T K 

−1 
χ κ( a , z ′ ) 

)
. (82) 

his can now be used to define the Green’s function ( 66 ). 
It should be emphasized that the uncertainty on the optical depth, 

nd by extension the uncertainty on the opacity, is not yet included in
he uncertainty estimate for the radiation field ( 77 ). The expression
 77 ) only includes the uncertainties on the emissivity, and not on
he opacity or optical depth, because the opacity (only) appears in 
he linear operator ( 65 ), which in the Bayesian linear regression

ethod is assumed to be deterministic. The reason for this is that
mposing a probability distribution also on the linear operator would 
ender the posterior distribution non-Gaussian, which would severely 
omplicate conditioning and impede analytical solutions. 

Nevertheless, in this particular case, an analytic solution can still 
e obtained for the expectation and the variance of the radiation 
eld, taking into account the distribution of the opacity, although the 
esulting distribution is not a Gaussian anymore. 

From equations ( 76 ) and ( 77 ), and equations ( 81 ) and ( 82 ), we
now the distributions of the stochastic functions I and τ , 

 ( I | τ ) = N 

(
˜ I , ˜ ε 2 I 

)
, (83) 

 ( τ ) = N 

(
˜ τ , ˜ ε 2 τ

)
. (84) 

he expectation, ˆ I , and variance, ̂  ε 2 I , of the radiation field with respect
o the joint distribution with τ can then be obtained using the law of
otal expectation (see Appendix A7 ), 

ˆ 
 ≡ E [ I ] = E τ [ E [ I | τ ] ] = E τ

[
˜ I 
]
, (85) 

nd similarly, using the law of total variance (see Appendix A8 ), 

ˆ  2 I ≡ V [ I ] = E τ [ V [ I | τ ] ] + V τ [ E [ I | τ ] ] 

= E τ

[
˜ ε 2 I 
] + E τ

[
˜ I 2 
] − ˆ I 2 . (86) 

valuating these expectations yields (see Appendix A9 ), 

ˆ 
 ( s) = I 0 e 

− ˆ τ ( s 0 ,s) + ηT K 

−1 
η

∫ s 

s 0 

d s ′ κ( a , s ′ ) e − ˆ τ ( s ′ ,s) (87) 

ith the corresponding uncertainty estimate given by 

ˆ  2 I ( s) ≤
∫ s 

s 0 

d s ′ 
∫ s 

s 0 

d z ′ e −τ ( s ′ , s) e −τ ( z ′ , s) 

× (κ( s ′ , z ′ ) − κ( a , s ′ ) T K 

−1 
η κ( a , z ′ ) 

)
+ Ī 2 ( s) − ˆ I 2 ( s) . (88) 

hese expressions look very similar to equations ( 76 ) and ( 77 ). The
nly difference is that the optical depth is replaced by newly defined
f fecti ve optical depths, 

ˆ ( z, s) ≡ ˜ τ ( z , s) − 1 
2 ˜ ε 

2 
τ ( z , s) , (89) 
( z, s) ≡ ˆ τ ( z , s) − 1 
2 ˜ ε 

2 
τ ( z , s) , (90) 

nd there are additional terms in ( 87 ), which account for correlations
n the optical depth. The intensity, Ī , is defined analogously to ˆ I ,
ut with ˆ τ replaced by τ . Equation ( 88 ) only gives a practical upper
ound. In Appendix A9 , we also derive the complete expression for

ˆ  2 I . The uncertainty on the optical depth thus causes an ef fecti ve
eduction of the optical depth that appears in the radiation field ( 87 ).

.3 Example 

e illustrate the Bayesian method of characteristics with a simple 
xample. Consider a set of N d points, { s d } , at which we know the
missivities, { ηd } , and opacities, { χd } . Moreo v er, consider a set
f N b = N d basis functions that satisfy the interpolation property
or the data points, i.e. φi ( s d ) = δdi , such that the design matrix
s an identity matrix. As a result, we have that κ( a , a ) = λ2 , such
hat, if we use the same interpolation scheme both for η and χ , we
ave that, K η ≡ λ2 + σ 2 

η, and K χ ≡ λ2 + σ 2 
χ . Furthermore, one can 

how that κ( a , s) = λ2 φ( s). Finally, we assume that λ = λ1 , and we
ssume the same uncertainty for every data point, such that σ η = ση1
nd σ χ = σχ1 . The resulting optical depth and the corresponding 
ncertainty estimate can then be written as 

˜ ( z, s) = 

λ2 

λ2 + σ 2 
χ

χT ψ τ ( z, s) , (91) 

˜  2 τ ( z, s) = 

λ2 σ 2 
χ

λ2 + σ 2 
χ

ψ τ ( z , s) T ψ τ ( z , s) , (92) 

n which χ is the vector of opacities, and we defined the vector, 

 τ ( z, s) ≡
∫ s 

z 

d s ′ φ( s ′ ) . (93) 

imilarly for the radiation field, we find that 

ˆ 
 ( s) = I 0 e 

− ˆ τ ( s 0 ,s) + 

λ2 

λ2 + σ 2 
η

ηT ˆ ψ I ( s) , (94) 

ˆ  2 I ( s) ≤ λ2 σ 2 
η

λ2 + σ 2 
η

ψ̄ I ( s ) 
T ψ̄ I ( s ) + Ī 2 ( s) − ˆ I 2 ( s) , (95) 

n which η is the vector of emissivities, and we defined the vectors, 

ˆ 
 I ( s) ≡

∫ s 

s 0 

d s ′ φ( s ′ ) e − ˆ τ ( s ′ , s) , (96) 

¯
 I ( s) ≡

∫ s 

s 0 

d s ′ φ( s ′ ) e −τ ( s ′ , s) . (97) 

Fig. 1 shows the solution the the radiative transfer equation along
 single ray using the Bayesian method of characteristics. The 
ariances were chosen comically large, especially to illustrate the 
f fecti ve optical depths. Even with such large variance, we see that
he effect on the optical depth is relatively small. As basis functions,
e choose the 25 fifth-order basis splines that interpolate the 25
niformly distributed data points, i.e. such that φi ( s d ) = δdi . It should
e emphasized that, although the probability distributions for the 
missivity , opacity , and optical depth are all Gaussian, the probability
istribution for the intensity is not a Gaussian. In fact, we have not
pecified the particular distrib ution, b ut could nevertheless determine 
he expectation and variance. 

Although we only presented the probabilistic numerical method 
n the absence of scattering, ne glecting an y frequenc y dependence,
nd only along a single ray, we should note that it can readily by
eneralized to a three dimensions, including scattering and frequency 
ependence. How this can be done for a particular set of basis
unctions will be demonstrated in a forthcoming paper. 
MNRAS 518, 5536–5551 (2023) 
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M

Figure 1. Example of the Bayesian method of characteristics for 25 data 
points, with I 0 = 1.0 W/m 

2 , ση = 1.0 W/m 

3 , σχ = 2.5 m 

−1 , and λ = 

10.0. The error bars on the data and the shaded areas around the curves 
show the respective (local) 1 σ confidence intervals (CI), or its upper bound 
( 95 ) for the intensity. The source code for this figure can be found at 
github.com/FredDeCeuster/Radiativ eTransferAsRe gression. 
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 DISCUSSION  

he probabilistic numerical method presented in this paper differs
ignificantly from commonly-used (probabilistic) sampling-based

onte Carlo methods for uncertainty quantification (Metropolis
 Ulam 1949 ). Where sampling-based Monte Carlo methods are

on-intrusive and treat the physical model under consideration as a
lack box, the probabilistic numerical approach, as described here,
equires to recast the entire description of the model as a Bayesian
inear regression problem. This investment, ho we ver, pays of f in
 key advantage for the probabilistic numerical approach: where
ampling-based methods typically require many model e v aluations
o obtain a distribution, the probabilistic numerical approach requires
nly a single, albeit computationally slightly more e xpensiv e, model
 v aluation. This is particularly advantageous for computationally
NRAS 518, 5536–5551 (2023) 
 xpensiv e models, such as the ones encountered in radiative transfer,
s described in this paper. 

The (Bayesian) linear regression model is critically defined by the
hoice of basis functions or the choice of the corresponding kernel.
s discussed in Section 2.4 , different choices of basis functions give

ise to different kinds of descriptions, or, when, N b < N d , different
inds of approximations. In particular, the truncation of a set of
ourier basis functions implies a characteristic minimal resolvable

ength scale, whether or not to include certain data-centred radial
asis functions will alter the solution around those data points, and
avelets allow one to locally refine or coarsen the model. All of these
articular bases have their particular advantages and disadvantages,
ut none of them is in any sense optimal. Furthermore, it should
e noted that, in our discussion of different bases, we did not take
nto account the effect of the operator acting on the basis functions,
hile at the end of Section 2.1.4 it was emphasized that to solve
 linear operator equation such as ( 13 ), the basis functions should
deally be chosen such that { L φi } can properly fit g ( x ), { B φi } can
roperly fit h ( x ), and { φi } can properly fit the sought after solution
unction f ( x ). There are many different ways to solve this optimization
roblem of finding an appropriate (reduced) set of basis functions,
ften colloquially referred to as model-order reduction methods (see
.g. Benner et al. 2017 ). One particularly interesting method by
whadi ( 2017 ) describes how to construct a basis that is in a sense
ptimal, based on probabilistic numerical considerations (see also
whadi & Sco v el 2019 ). In a forthcoming paper, we will choose a
articular type of basis, show how it can be tailored to the problem
t hand, and demonstrate how this can be used to solve radiative
ransfer problems in a practical three-dimensional setting. 

Probabilistic numerical methods are by no means restricted to
adiative transfer applications and can readily be applied to various
ther solvers of operator equations. In particular, we envision similar
echniques to be useful, for instance, in chemical kinetics models
hat simulate the chemical evolution of a set of species, given a
etwork of chemical reactions (see e.g. McElroy et al. 2013 ). These
hemical networks are also often reduced to lower the computational
ost (see e.g. Grassi et al. 2021 ). As a result, the probabilistic
umerical setting might also there lead to interesting approximation
echniques. Ho we ver, since these are initial value problems, the
equired probabilistic numerical approach will probably be different
rom what was presented here and more along the lines of, for
nstance, Conrad et al. ( 2017 ). 

 C O N C L U S I O N  

nspired by the probabilistic numerical approaches advocated,
mongst others, by Hennig et al. ( 2015 , 2022 ) and Cockayne
t al. ( 2019 ), we have presented a way to vie w radiati ve transfer
s a Bayesian linear regression problem. Specifically, we have
odelled the solution of a radiative transfer problem with the

xpectation of a multi v ariate Gaussian probability distribution o v er
ossible solutions, conditioned on e v aluations of the radiative trans-
er equation and boundary conditions. This allowed us to model
ncertainties, both on the input and output of the model, with
he variances of the associated probability distributions, without
he need for computationally e xpensiv e (Monte Carlo) sampling
chemes. Moreo v er, this method naturally allowed us to create
educed-order radiative transfer models, for which the probabilistic
nterpretation furthermore allowed us to quantify the uncertainty that
as introduced by reducing the model. As an example, we showed
ow the commonly-used method of characteristics can be derived
rom a probabilistic point of view. 
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The aim of this paper was not to present the definitive probabilistic
umerical approach for radiative transfer, but rather to motivate future 
esearch in this direction by showing the potential benefits of a prob-
bilistic point of view and indicate connections with other research, 
or instance, by quantifying uncertainties from a statistical point or 
iew, and viewing model reduction as a form of data compression. 
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PPENDIX  A :  MA  T H E M A  T I C A L  B  AC K G R  O U N D  

1 Equi v alence between primal and dual formulation 

o show the equivalence between the primal and dual formulation
e have to prove equation ( 12 ), or equi v alently, 

−2 � 

(
� 

T σ−2 � + λ−2 
)−1 − (

� λ2 � 

T + σ 2 
)−1 

� λ2 = 0 . (A1) 

sing the Woodburry matrix identity, the second term expands as, 

−2 � λ2 − σ−2 � 

(
λ−2 + � 

T σ−2 � 

)−1 
� 

T σ−2 � λ2 . (A2) 

sing ( A2 ) in ( A1 ), ignoring the o v erall factor, σ−2 � , and isolating
he terms with the inverse, it remains to show that, (
� 

T σ−2 � + λ−2 
)−1 (

1 + � 

T σ−2 � λ2 
)− λ2 = 0 . (A3) 

ewriting the second factor by extracting λ2 then yields (
� 

T σ−2 � + λ−2 
)−1 (

λ−2 + � 

T σ−2 � 

)
λ2 − λ2 = 0 (A4) 

aking it clear that the equality indeed holds and that the primal and
ual solutions are thus equi v alent. 

2 Definitions 

n this section, we summarize and explain some of the concepts from
tatistics that are used throughout the main text. 

2.1 Expectation 

he expectation, E [ X], of a random variable, X , is defined as the
ntegral (or sum) over all possible values, x , that variable can take,
eighted by its probability density, p ( x ), 

 [ X] ≡
∫ 

d x p( x ) x . (A5) 

lthough here, in our notation, we carefully distinguished between
he random variable, X , and a specific realization of that variable, x ,
hroughout this paper, we sometimes make the common slight abuse
f notation by denoting both a random variable and its realizations
ith the same symbol. 

2.2 Variance 

he variance, V [ X], of a random variable, X , is defined as the
xpectation of the square difference between that variable and its
xpectation, 

 [ X] ≡ E 

[
( X − E [ X] ) 2 

]
. (A6) 

he variance can be interpreted as the expected square deviation
rom its expectation and thus quantifies the spread of the distribution
f the random variable. Sometimes, the variance can be computed
ore conveniently as, 

 [ X] = E 

[
X 

2 
] − E [ X ] 2 , (A7) 

hich follows from the definition ( A6 ) by direct computation. 

2.3 Covariance 

he co variance, Co v[ X i , X j ], between two random variables, X i and
 j , is defined as the expectation of the product of the differences of
ach variable with its expectation, 

ov [ X i , X j ] ≡ E 

[
( X i − E [ X i ] ) 

(
X j − E [ X j ] 

) ]
. (A8) 
NRAS 518, 5536–5551 (2023) 
he covariance of a random variable and itself equals its variance, 

ov [ X i , X i ] = V [ X i ] , (A9) 

hich follows directly from the definitions ( A6 ) and ( A8 ). 

2.4 Marginal probability 

he marginal probability distribution, p ( X i ), of a random variable,
 i , given the joint probability distribution, p ( X i , X j ), with another

andom variable, X j , is given by 

( X i ) ≡
∫ 

d X j p( X i , X j ) , (A10) 

hich amounts to integrating out the other random variable. Note
he abuse of notation in using the random variable, X j , to denote its
bserved value, x j . 

2.5 Conditional probability 

he conditional probability, p ( X i | x j ), of a random variable, X i , given
he observation of the value, x j , of another random variable, X j , is
iven by 

 ( X i | X j ) ≡ p ( X i , X j ) ∫ 
d X i p ( X i , X j ) 

= 

p ( X i , X j ) 

p ( X j ) 
, (A11) 

hich amounts to a re-scaling of the joint distribution, p ( X i , X j ), with
he marginal distribution p ( X j ). Note the abuse of notation in using
he random variable, X j , to denote its observed value, x j . 

2.6 Multivariate Gaussian or normal probability distribution 

 random vector v ariable, X ∼ N ( μ, � ), follo ws a multi v ariate
aussian or normal probability distribution with mean vector, μ,

nd covariance matrix, � , if its probability distribution is given by 

 ( X ) ≡ 1 √ 

det ( 2 π� ) 
exp 

(
−1 

2 
( X − μ) T � 

−1 ( X − μ) 

)
. (A12) 

y direct computation, one can verify that the expectation, variance,
nd covariance of the components, X i , of the multi v ariate Gaussian
istributed vector variable X ∼ N ( μ, � ), are respectively given by 

 [ X i ] = μi , (A13) 

 [ X i ] = � ii , (A14) 

ov [ X i , X j ] = � ij . (A15) 

he relations between a marginal and conditional (multi v ariate)
aussian distributions are given in Appendix A3 and the relations

or conditioning a (multi v ariate) Gaussian distribution are given in
ppendix A4 . 

3 Marginal and conditional Gaussians 

iven a (marginal) Gaussian distribution, p( x ), and a corresponding
onditional Gaussian distribution, p( y | x ), which are defined as 

( x ) = N 

(
μx , � x 

)
, (A16) 

( y | x ) = N 

(
A x + b , � y | x 

)
, (A17) 

he other corresponding marginal distribution, p( y ), and the reverse
onditional distribution, p( x | y ), are given by 
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( y ) = N 

(
A μx + b , � y | x + A � x A 

T 
)
, (A18) 

( x | y ) = N 

(
� 

(
A 

T � 

−1 
y | x ( y − b ) + � 

−1 
x μx 

)
, � 

)
, (A19) 

n which we defined the covariance matrix, 

 ≡ (
� 

−1 
x + A 

T � 

−1 
y | x A 

)−1 
. (A20) 

hese relations can be derived by ‘completing the square’ in the 
istribution function and collecting the rele v ant terms, as described 
n detail, for instance, in Bishop ( 2006 ). 

4 Conditioning a Gaussian 

onsider a stochastic vector variable, y , defined by two separate 
tochastic vector variables, a and b , and assume that all components 
ollow a (multivariate) Gaussian distribution, i.e. 

y = 

[
a 
b 

]
∼ N 

([
μa 

μb 

]
, 

[
� a a � a b 

� b b � b b 

])
, (A21) 

n which, μa and μb are the mean vectors and the matrices � a a , 
 a b = � 

T 
b a , and � b b , together form the covariance matrix. Now, we 

an ask what the resulting distribution of a would be, given prior
nowledge about the value for b . Fixing the value of b again yields
 multi v ariate Gaussian distribution, 

 ( a | b ) = N 

(
μa | b , � a | b 

)
, (A22) 

n which the conditioned mean and variance are given by 

a | b = μa + � a b � 

−1 
b b 

(
b − μb 

)
, (A23) 

 a | b = � a a − � a b � 

−1 
b b � b a . (A24) 

hese relations can be derived by ‘completing the square’ in the 
istribution function and collecting the rele v ant terms, as described 
n detail, for instance, in Bishop ( 2006 ). 

Note that without correlation between a and b , i.e. when � a b = 

 

T 
b a = 0, the prior knowledge about b will not affect the distribution

f a , which is in line with expectations. 

5 RKHS bound on the uncertainty 

et H denote the reproducing kernel Hilbert space (RKHS) of the 
ernel defined in ( 7 ), with an associated inner product, 〈〉 H 

, and
orm ‖ · ‖ H 

≡ √ 〈·, ·〉 H 

. The defining properties of an RKHS with 
eproducing kernel, k , are that, k( x, ·) ∈ H, and that, 

 f ∈ H : 〈 f , k( x, ·) 〉 H 

= f ( x) , (A25) 

.e. an inner product with the kernel around x corresponds to function
 v aluation in x (see e.g. Berlinet & Thomas-Agnan 2004 , for a
omprehensive introduction). The latter is known as the reproducing 
roperty and it is the key to derive the bound given in equation ( 48 ).
f we now consider the projection Pf ∈ H of the function, f , in the
KHS, H, the reproducing property ( A25 ) implies that 

f ( x) = 〈 Pf , k( x, ·) 〉 H 

. (A26) 

y definition of the data, we also have that Pf ( x ) = y , such that 

 = 〈 Pf , k( x, ·) 〉 H 

. (A27) 

ubstituting this in ( 31 ), and defining K ≡ k( x , x ) + σ 2 , yields 

˜ 
 ( x) = k ( x, x ) K 

−1 〈 Pf , k ( x, ·) 〉 H 

, (A28) 
uch that, in combination with equation ( A26 ), we find that ∣∣Pf ( x) − ˜ f ( x) 
∣∣ = 

∣∣〈Pf , k( ·, x) − k( x, x ) K 

−1 k( ·, x) 
〉
H 

∣∣
≤ ‖ Pf ‖ H 

∥∥k ( x, ·) −k ( x, x ) K 

−1 k ( x, ·) ∥∥H 

, (A29) 

here in the last step, we used the Cauchy–Schwarz inequality. 
onsidering the square of the last factor, we find 

∥
∥
∥k( x, ·) − k( x, x ) K 

−1 k( x, ·) 
∥
∥
∥

2 

H 

= k( x , x ) − 2 k( x , x ) K 

−1 k( x, x ) 

+ k ( x, x ) K 

−1 k ( x , x ) K 

−1 k( x , x) 

= k( x , x ) − k( x , x ) K 

−1 k( x, x ) 

−k ( x, x ) K 

−1 (K − k ( x , x ) 
)
K 

−1 k( x , x) 

= ˜ ε 2 ( x) − k ( x, x ) K 

−1 σ 2 K 

−1 k ( x, x) , 

(A30) 

here in the last equality we used equation ( 32 ). Since the second
erm can be viewed as (minus) the square of the Euclidean norm of
he vector, σ K 

−1 k( x, x), it will al w ays be negative, such that, ∥∥k( x, ·) − k( x, x ) K 

−1 k( x, ·) ∥∥H 

≤ ˜ ε ( x) . (A31) 

ote that in the limit of perfect data, i.e. σ → 0 , the abo v e inequality
ecomes an equality. Substituting this in equation ( A29 ), we obtain
he desired bound on the local error, ∣∣Pf ( x) − ˜ f ( x) 

∣∣ ≤ ‖ Pf ‖ H 

˜ ε ( x) . (A32) 

t should be emphasized that this only bounds the absolute difference
etween the approximation and the projection of the true solution in
he RKHS, not the absolute difference between the approximation 
nd the true solution itself. Therefore, the strength of this bound
rucially depends on the RKHS, and thus on the particular kernel, or
qui v alently, on the particular set of basis functions that is used. 

6 Equi v alent k ernel for the method of characteristics 

iven a linear PDE, and given the corresponding Green’s function, 
 , for the differential operator, one can construct a kernel, 

( z, s) = 

∫ +∞ 

−∞ 

d s ′ 
∫ +∞ 

−∞ 

d z ′ κ( s ′ , z ′ ) G ( z ′ , z) G ( s ′ , s) , (A33) 

ased on another kernel, κ . For later convenience, we define a new
unction, g , that, using the Green’s functions, can be expressed as 

( s, z) ≡ L 2 k( z, s) = 

∫ +∞ 

−∞ 

d z ′ κ( s, z ′ ) G ( z ′ , z) , (A34) 

( z, s) ≡ L 1 k( z, s) = 

∫ +∞ 

−∞ 

d s ′ κ( s ′ , z) G ( s ′ , s) , (A35) 

n which the subscript on the differential operator, L , indicates 
hether it acts on the first or second argument. Note that both
efinitions are consistent, since k is symmetric in its arguments. 
sing the Green’s functions again, one can derive, 

 1 L 2 k( z, s) = L 1 g( s, z) = κ( s, z) , (A36) 

 2 L 1 k( z, s) = L 2 g( z, s) = κ( s, z) . (A37) 

hen solving the PDE as a Bayesian linear regression problem, the
orresponding covariance matrix of the joint distribution, reads ⎛ 

⎝ 

L 1 L 2 k( a , a ) L 1 B 2 k( a , b ) L 1 k( a , s) 
B 1 L 2 k( b , a ) B 1 B 2 k( b , b ) B 1 k( b , s) 

L 2 k( s, a ) B 2 k( s, b ) k( s , s ) 

⎞ 

⎠ (A38) 

nd can be simplified using the definitions abo v e to yield ⎛ 

⎝ 

κ( a , a ) B 1 g( a , b ) g( a , s) 
B 1 g( a , b ) B 1 B 2 k( b , b ) B 1 k( b , s) 

g( a , s) B 2 k( s, b ) k( s , s ) 

⎞ 

⎠ . (A39) 
MNRAS 518, 5536–5551 (2023) 
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he requirement that this matrix is positive semi-definite for all
reen’s functions, G , can be reduced to the condition that 

( a , s) T κ( a , a ) −1 κ( a , z) ≤ κ( s, z) , (A40) 

olds for all s , z ∈ D , which is equi v alent to the condition that κ is a
ositive semi-definite kernel, as expected. 
In the method of characteristics (Section 3.2 ), we considered the

pecial case where the second kernel, κ , has the additional property
hat it cannot correlate the regions s > s 0 and s < s 0 , i.e. 

( z, s) ≡ � ( s 0 − z) � ( s 0 − s ) κ( z, s ) 

+ � ( z − s 0 ) � ( s − s 0 ) κ( z, s) . (A41) 

sing the Green’s function from the radiative transfer equation, this
mplies, for z ≥ b and s ≥ b , that 

k( z, s) = 

∫ z 

b 

d z ′ 
∫ s 

b 

d s ′ κ( z ′ , s ′ ) e −τ ( z ′ ,z) e −τ ( s ′ ,s) 

+ k( b , b ) e −τ ( b,z) e −τ ( b,s) . 

(A42) 

imilarly, this implies, for z ≥ b and s ≥ b , that 

( s, z) = 

∫ z 

b 

d z ′ κ( s, z ′ ) e −τ ( z ′ ,z) , (A43) 

nd in particular that for s ≥ b , we have that g ( s , b ) = 0. As a result,
he inverted matrix in equations ( 33 ) and ( 34 ) reduces to ( 

L 1 L 2 k( a , a ) + σ 2 
L L 1 B 2 k( a , b) 

B 1 L 2 k( b, a ) B 1 B 2 k( b , b ) + σ 2 
B 

) 

(A44) 

= 

( 

κ( a , a ) + σ 2 
L g( a , b) 

g( a , b) T k( b , b ) + σ 2 
B 

) 

= 

(
κ( a , a ) + σ 2 

L 0 
0 T k( b , b ) + σ 2 

B 

)
. 

efine the matrix K ≡ κ( a , a ) + σ 2 
L , and let us assume that there is

o uncertainty on the boundary condition, i.e. σ B = 0. The function
pproximation in the dual formulation then reads 

˜ 
 dual ( s) = 

(
η

I 0 

)T (
K 0 
0 T k( b , b ) 

)−1 (
g( a , s) 
k( b, s) 

)
= I 0 e 

−τ ( b,s) + ηT K 

−1 
∫ s 

b 
d s ′ κ( a , s ′ ) e −τ ( s ′ ,s) . (A45) 

e clearly recognize the result from the method of characteristics.
imilarly, the corresponding variance reads 

˜ 2 dual ( s) = k( s , s ) −
(

g( a , s) 
k( b, s) 

)T (
K 0 
0 T k( b , b ) 

)−1 (
g( a , s) 
k( b, s) 

)
(A46) 

= 

∫ s 
b 

d s ′ 
∫ s 

b 
d z ′ e −τ ( s ′ , s) e −τ ( z ′ , s) 

× (κ( s ′ , z ′ ) − κ( a , s ′ ) T K 

−1 κ( a , z ′ ) 
)
. 

n the parentheses, we recognize the conditioned variance ( 32 ) that
tems from the interpolation of the emissivity ( 70 ). 

7 The law of total expectation 

iven two random variables, X and Y , in the same probability space,
he law of total expectation states that 

 [ X] = E Y 

[
E [ X| Y ] 

]
, (A47) 

.e. the expectation of X is the same as the expectation over Y of the
onditional expectation of X given Y . A sketch for a proof can be
NRAS 518, 5536–5551 (2023) 
erived from the following equalities, 

 Y 

[
E [ X| Y ] 

] = 

∫ 
d Y p ( Y ) 

∫ 
d X p ( X | Y ) X 

= 

∫ 
d Y 

∫ 
d X p ( X , Y ) X 

= 

∫ 
d X p ( X ) X 

= E [ X] , (A48) 

here in the first equality we used the definition of the expectation,
n the second we used the conditional probability, and in the third we
sed the marginal probability. 

8 The law of total total variance 

iven two random variables, X and Y , in the same probability space,
he law of total variance states that, 

 [ X] = E Y 

[
V [ X| Y ] 

] + V Y 

[
E [ X| Y ] 

]
, (A49) 

.e. the variance of X is the sum of the expected conditional variance
nd the variance of the conditional expectation. This follows directly
orm the law of total expectation ( A47 ). Using the law of total
xpectation in equation ( A7 ) yields 

 [ X] = E Y 

[ 
E 

[
X 

2 | Y 

]] − E Y 

[
E [ X| Y ] 

]2 
= E Y 

[ 
V 

[
X | Y 

] + E 

[
X | Y 

]2 ] − E Y 

[
E [ X | Y ] 

]2 
= E Y 

[ 
V 

[
X | Y 

]] + E Y 

[ 
E 

[
X | Y 

]2 ] − E Y 

[
E [ X | Y ] 

]2 
= E Y 

[
V [ X | Y ] 

] + V Y 

[
E [ X | Y ] 

]
, (A50) 

here in the second and fourth equality we used equation ( A7 ) and
n the third equality we used the linearity of the expectation. 

9 Expectations of optical depth 

e compute the expectations with respect to the Gaussian-distributed
ptical depth to obtain the total expectation and variance in equa-
ions ( 87 ) and ( 88 ). Since the optical depth al w ays appears in an
xponential, we are interested in, 

 τ

[
e −τ ( z,s) 

] = 

∫ 
d τ ( z, s) p 

(
τ ( z, s) 

)
e −τ ( z,s) 

= exp 

(
− ˜ τ ( z , s) + 

1 

2 
˜ ε 2 τ ( z , s) 

)
, (A51) 

n which we used that the optical depth is Gaussian distributed, as
n equation ( 84 ). In the exponent, we recognize what we defined as
he ef fecti ve optical depth in equation ( 89 ). Using the linearity of the
xpectation, this immediately yields the result in equation ( 87 ). 

Similarly, for the variance, we also require, 

 τ

[ 
e −τ ( z ′ ,s) e −τ ( s ′ ,s) 

] 
= E τ

[ 
e −τ ( z ′ ,s) 

] 
E τ

[ 
e −τ ( s ′ ,s) 

] 
+ Cov 

[ 
e −τ ( z ′ ,s) , e −τ ( s ′ ,s) 

] 
. (A52) 

ince the optical depth is Gaussian distributed, the exponential of
inus the optical depth will follow a log-normal distribution. The
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Using the linearity of the expectation, we thus find 

E τ

[
˜ ε 2 I 
] = 

∫ s 

s 0 

d s ′ 
∫ s 

s 0 

d z ′ e −τ ( s ′ , s) e −τ ( z ′ , s) e −
1 
2 ̃ ε 

2 
τ ( s ′ ,z ′ ) 

× (κ( s ′ , z ′ ) − κ( a , s ′ ) T K 

−1 
η κ( a , z ′ ) 

)
. (A57) 

Furthermore, using the same relations, we can find that 

E τ

[
˜ I 2 
] = I 2 0 e 

−2 τ ( s 0 ,s) 

+ 2 I 0 e 
−τ ( s 0 ,s) 

∫ s 

s 0 

d s ′ H ( s ′ ) e −
1 
2 ̃ ε 

2 
τ ( s 0 ,s ′ ) 

+ 

∫ s 

s 0 

d z ′ H ( z ′ ) 
∫ s 

s 0 

d s ′ H ( s ′ ) e −
1 
2 ̃ ε 

2 
τ ( z ′ ,s ′ ) (A58) 

where we defined H ( s ′ ) ≡ ηT K 

−1 
η κ( a , s ′ ) e −τ ( s ′ ,s) , to simplify no- 

tation. In practice, equations ( A57 ) and ( A58 ) are difficult to work 
with due to their dependence on the cross term, ˜ ε 2 τ ( z ′ , s ′ ). Ho we ver, 
since this is a positive quantity, we can define an upper bound by 
removing it, such that equation ( A57 ) simplifies to 

E τ

[
˜ ε 2 I 
] ≤

∫ s 

s 0 

d s ′ 
∫ s 

s 0 

d z ′ e −τ ( s ′ , s) e −τ ( z ′ , s) 

× (κ( s ′ , z ′ ) − κ( a , s ′ ) T K 

−1 
η κ( a , z ′ ) 

)
, (A59) 

and, furthermore, equation ( A58 ) simplifies to 

E τ

[
˜ I 2 
] ≤ Ī 2 . (A60) 

where, in analogy with equation ( A47 ), we defined 

Ī ( s) ≡ I 0 e 
−τ ( s 0 ,s) + ηT K 

−1 
η

∫ s 

s 0 

d s ′ κ( a , s ′ ) e −τ ( s ′ ,s) (A61) 

Combining all these results yields the practical inequality ( 88 ). 
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ovariance of this log-normal distribution is given by 

Cov 
[ 
e −τ ( z ′ ,s) , e −τ ( s ′ ,s) 

] 
= 

(
exp 
(
Cov 

[−τ ( z ′ , s) , −τ ( s ′ , s) 
]) − 1 

)
× exp 

(
− ˜ τ ( z ′ , s) − ˜ τ ( s ′ , s) + 

1 

2 

(
˜ ε 2 τ ( z ′ , s) + ̃  ε 2 τ ( s ′ , s) 

))
, 

(A53) 

uch that we can write the required expectation as 

E τ

[ 
e −τ ( z ′ ,s) e −τ ( s ′ ,s) 

] 
= exp 

(
Cov 

[−τ ( z ′ , s) , −τ ( s ′ , s) 
])

× exp 

(
− ˜ τ ( z ′ , s) − ˜ τ ( s ′ , s) + 

1 

2 

(
˜ ε 2 τ ( z ′ , s) + ̃  ε 2 τ ( s ′ , s) 

))
. 

(A54) 

he covariance of the optical depths can easily be derived from their
oint Gaussian distribution, which yields 

Cov 
[−τ ( z ′ , s) , −τ ( s ′ , s) 

]
= 

∫ s 

z ′ 
d z ′′ 
∫ s 

s ′ 
d s ′′ 
(
κ( s ′′ , z ′′ ) − κ( a , s ′′ ) T K 

−1 
χ κ( a , z ′′ ) 

)
= 

1 

2 

(
˜ ε 2 τ ( z ′ , s) + ˜ ε 2 τ ( s ′ , s) − ˜ ε 2 τ ( s ′ , z ′ ) 

)
, (A55) 

here the last equality can be derived by subdividing the (2D) domain 
f integration. Using the second ef fecti ve optical depth variable ( 90 )
o simplify notation, equation ( A54 ) can be written as 

 τ

[ 
e −τ ( z ′ ,s) e −τ ( s ′ ,s) 

] 
= e −τ ( z ′ ,s) e −τ ( s ′ ,s) e −

1 
2 ̃ ε 

2 
τ ( s ′ ,z ′ ) . (A56) 
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