373 research outputs found

    From 3,4-dinitrothiophene to nitrocyclopropanes and 1,1'-dinitro-1,1'-bi(cyclopropyl) compounds

    Get PDF
    Treatment of (E,E)-1,4-diaryl-2,3-dinitro-1,3-butadienes (I) with diazomethane in Et2O or THF represents a facile and high-yielding route to 2,2'-diaryl-1,1'-dinitro-1,1'-bi(cyclopropyl)s. The process exclusively produces diastereomeric mixts. of a chiral d,l pair and a meso form, the relative percentages of which depend on the aryl moiety, consistently with a concerted syn-stereoselective cyclopropanation of each double bond. With 1 mol-equiv of CH2N2, the cyclopropanation can effectively be limited to one double bond of the starting dinitrobutadiene, thus allowing a synthetically useful differentiation between the two originally conjugated nitrovinyl moieties. As verified with model derivs., the resulting vinylcyclopropanes can be cyclopropanated with excess diazomethane to give the same diastereomeric mixts. as obtained by direct bis(cyclopropanation) of I

    Editorial: Coastal risk: shores and deltas in peril

    Get PDF
    Coastal systems are the result of a natural equilibrium between hydrodynamic, atmospheric, and terrestrial parameters and sediment dynamics. In the Anthropocene, this equilibrium in many coastal regions can be altered by human activities. These activities may globally magnify the effects of extreme meteorological events and sea level rise and directly influence coastal processes down to a local scale within and between river catchments, the sea, and the coast. While most interventions, such as urban development, seawalls, and jetties are placed for specific human benefits, their indirect effects on coastal economies, societies and ecosystems can be significant. [...

    Atomic scale engines: Cars and wheels

    Full text link
    We introduce a new approach to build microscopic engines on the atomic scale that move translationally or rotationally and can perform useful functions such as pulling of a cargo. Characteristic of these engines is the possibility to determine dynamically the directionality of the motion. The approach is based on the transformation of the fed energy to directed motion through a dynamical competition between the intrinsic lengths of the moving object and the supporting carrier.Comment: 4 pages, 3 figures (2 in color), Phys. Rev. Lett. (in print

    Neutron cross-sections for advanced nuclear systems : The n-TOF project at CERN

    Get PDF
    © Owned by the authors, published by EDP Sciences, 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n-TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.Peer reviewedFinal Published versio

    In vitro phosphorylation as tool for modification of silk and keratin fibrous materials

    Get PDF
    An overview is given of the recent work on in vitro enzymatic phosphorylation of silk fibroin and human hair keratin. Opposing to many chemical "conventional" approaches, enzymatic phosphorylation is in fact a mild reaction and the treatment falls within "green chemistry" approach. Silk and keratin are not phosphorylated in vivo, but in vitro. This enzyme-driven modification is a major technological breakthrough. Harsh chemical chemicals are avoided, and mild conditions make enzymatic phosphorylation a real "green chemistry" approach. The current communication presents a novel approach stating that enzyme phosphorylation may be used as a tool to modify the surface charge of biocompatible materials such as keratin and silk

    Regenerative oscillation and four-wave mixing in graphene optoelectronics

    Full text link
    The unique linear and massless band structure of graphene, in a purely two-dimensional Dirac fermionic structure, have led to intense research spanning from condensed matter physics to nanoscale device applications covering the electrical, thermal, mechanical and optical domains. Here we report three consecutive first-observations in graphene-silicon hybrid optoelectronic devices: (1) ultralow power resonant optical bistability; (2) self-induced regenerative oscillations; and (3) coherent four-wave mixing, all at a few femtojoule cavity recirculating energies. These observations, in comparison with control measurements with solely monolithic silicon cavities, are enabled only by the dramatically-large and chi(3) nonlinearities in graphene and the large Q/V ratios in wavelength-localized photonic crystal cavities. These results demonstrate the feasibility and versatility of hybrid two-dimensional graphene-silicon nanophotonic devices for next-generation chip-scale ultrafast optical communications, radio-frequency optoelectronics, and all-optical signal processing.Comment: Accepted at Nature Photonics, July (2012

    A new European coastal flood database for low–medium intensity events

    Get PDF
    Coastal flooding is recognized as one of the most devastating natural disasters, resulting in significant economic losses. Therefore, hazard assessment is crucial to support preparedness and response to such disasters. Toward this, flood map databases and catalogues are essential for the analysis of flood scenarios, and furthermore they can be integrated into disaster risk reduction studies. In this study and in the context of the European Coastal Flood Awareness System (ECFAS) project (GA 101004211), which aimed to propose the European Copernicus Coastal Flood Awareness System, a catalogue of flood maps was produced. The flood maps were generated from flood models developed with LISFLOOD-FP for defined coastal sectors along the entire European coastline. For each coastal sector, 15 synthetic scenarios were defined focusing on high-frequency events specific to the local area. These scenarios were constructed based on three distinct storm durations and five different total-water-level (TWL) peaks incorporating tide, mean sea level, surge and wave setup components. The flood model method was extensively validated against 12 test cases for which observed data were collated using satellite-derived flood maps and in situ flood markers. Half of the test cases represented well the flooding with hit scores higher than 80 %. The synthetic-scenario approach was assessed by comparing flood maps from real events and their closest identified scenarios, producing a good agreement and global skill scores higher than 70 %. Using the catalogue, flood scenarios across Europe were assessed, and the biggest flooding occurred in well-known low-lying areas. In addition, different sensitivities to the increase in the duration and TWL peak were noted. The storm duration impacts a few limited flood-prone areas such as the Dutch coast, for which the flooded area increases more than twice between 12 and 36 h storm scenarios. The influence of the TWL peak is more global, especially along the Mediterranean coast, for which the relative difference between a 2- and 20-year return period storm is around 80 %. Finally, at a European scale, the expansion of flood areas in relation to increases in TWL peaks demonstrated both positive and negative correlations with the presence of urban and wetland areas, respectively. This observation supports the concept of storm flood mitigation by wetlands.</p

    A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)

    Get PDF
    Coastal regions are the areas most threatened by natural hazards, with floods being the most frequent and significant threat in terms of their induced impacts, and therefore, any management scheme requires their evaluation. In coastal areas, flooding is a hazard associated with various processes acting at different scales: coastal storms, flash floods, and sea level rise (SLR). In order to address the problem as a whole, this study presents a methodology to undertake a preliminary integrated risk assessment that determines the magnitude of the different flood processes (flash flood, marine storm, SLR) and their associated consequences, taking into account their temporal and spatial scales. The risk is quantified using specific indicators to assess the magnitude of the hazard (for each component) and the consequences in a common scale. This allows for a robust comparison of the spatial risk distribution along the coast in order to identify both the areas at greatest risk and the risk components that have the greatest impact. This methodology is applied on the Maresme coast (NW Mediterranean, Spain), which can be considered representative of developed areas of the Spanish Mediterranean coast. The results obtained characterise this coastline as an area of relatively low overall risk, although some hot spots have been identified with high-risk values, with flash flooding being the principal risk process

    Light-Promoted Hydrogenation of Carbon DioxideÂżAn Overview

    Full text link
    [EN] Hydrogenation of carbon dioxide is considered as a viable strategy to generate fuels while closing the carbon cycle (heavily disrupted by the abuse in the exploitation of fossil resources) and reducing greenhouse gas emissions. The process can be performed by heat-powered catalytic processes, albeit conversion and selectivity tend to be reduced at increasing temperatures owing to thermodynamic constraints. Recent investigations, as summarised in this overview, have proven that light activation is a distinct possibility for the promotion of CO2 hydrogenation to fuels. This effect is particularly beneficial in methanation processes, which can be enhanced under simulated solar irradiation using materials based on metallic nanoparticles as catalysts. The use of nickel, ruthenium and rhodium has led to substantial efficiencies. Light-promoted processes entail performances on a par with (or even superior to) those of thermally-induced, industrially-relevant, commercial technologies.The author thanks the Spanish Government (Ministerio de EconomĂ­a y Competitividad, MINECO) for financial support via a project for young researchers (CTQ2015-74138-JIN), and the ‘‘Severo Ochoa’’ programme (SEV 2012-0267). The European Union is also acknowledged for the SynCatMatch project (ERCAdG-2014-671093)Puga Vaca, A. (2016). Light-Promoted Hydrogenation of Carbon DioxideÂżAn Overview. Topics in Catalysis. 59(15-16):1268-1278. https://doi.org/10.1007/s11244-016-0658-zS126812785915-16Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem Rev 114:1709–1742Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711–1731Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv 5:22759–22776Armaroli N, Balzani V (2011) The hydrogen issue. ChemSusChem 4:21–36Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv 2:2358–2368Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92:2557–2567de Richter RK, Ming T, Caillol S (2013) Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew Sust Energ Rev 19:82–106Schach M-O, Schneider R, Schramm H, Repke J-U (2010) Techno-economic analysis of postcombustion processes for the capture of carbon dioxide from power plant flue gas. Ind Eng Chem Res 49:2363–2370Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. ChemSusChem 3:195–208Corma A, Garcia H (2013) Photocatalytic reduction of CO2 for fuel production: possibilities and challenges. J Catal 308:168–175Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186Dhakshinamoorthy A, Navalon S, Corma A, Garcia H (2012) Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ Sci 5:9217–9233Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758Ozin GA (2015) You can’t have an energy revolution without transforming advances in materials, chemistry and catalysis into policy change and action. Energy Environ Sci 8:1682–1684Ozin GA (2015) Throwing new light on the reduction of CO2. Adv Mater 27:1957–1963Abe T, Tanizawa M, Watanabe K, Taguchi A (2009) CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ Sci 2:315–321Li Y, Lu G, Ma J (2014) Highly active and stable nano NiO-MgO catalyst encapsulated by silica with a core-shell structure for CO2 methanation. RSC Adv 4:17420–17428Garbarino G, Bellotti D, Riani P, Magistri L, Busca G (2015) Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: catalysts activation, behaviour and stability. Int J Hydrogen Energy 40:9171–9182Carenco S, Wu C-H, Shavorskiy A, Alayoglu S, Somorjai GA, Bluhm H, Salmeron M (2015) Synthesis and structural evolution of nickel-cobalt nanoparticles under H2 and CO2. Small 11:3045–3053Sharafutdinov I, Elkjaer CF, de Carvalho HWP, Gardini D, Chiarello GL, Damsgaard CD, Wagner JB, Grunwaldt J-D, Dahl S, Chorkendorff I (2014) Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J Catal 320:77–88Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjaer CF, HummelshĂžj JS, Dahl S, Chorkendorff I, NĂžrskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6:320–324Garbarino G, Riani P, Magistri L, Busca G (2014) A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure. Int J Hydrogen Energy 39:11557–11565Iablokov V, Beaumont SK, Alayoglu S, Pushkarev VV, Specht C, Gao J, Alivisatos AP, Kruse N, Somorjai GA (2012) Size-controlled model CO nanoparticle catalysts for CO2 hydrogenation: synthesis, characterization, and catalytic reactions. Nano Lett 12:3091–3096Behrens M, Studt F, Kasatkin I, KĂŒhl S, HĂ€vecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, NĂžrskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, FernĂĄndez Sanz J, Rodriguez JA (2014) Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345:546–550Fiordaliso EM, Sharafutdinov I, Carvalho HWP, Grunwaldt J-D, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal 5:5827–5836Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem Commun 9:841–842Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Photoreduction of CO2 with H2 over ZrO2. A study of interaction of hydrogen with photoexcited CO2. Phys Chem Chem Phys 2:2635–2639Kohno Y, Ishikawa H, Tanaka T, Funabiki T, Yoshida S (2001) Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys Chem Chem Phys 3:1108–1113Teramura K, Tsuneoka H, Shishido T, Tanaka T (2008) Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem Phys Lett 467:191–194Tsuneoka H, Teramura K, Shishido T, Tanaka T (2010) Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2. J Phys Chem C 114:8892–8898Teramura K, S-i Okuoka, Tsuneoka H, Shishido T, Tanaka T (2010) Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). Appl Catal B 96:565–568Kohno Y, Hayashi H, Takenaka S, Tanaka T, Funabiki T, Yoshida S (1999) Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J Photochem Photobiol A 126:117–123Lo C-C, Hung C-H, Yuan C-S, Wu J-F (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energy Mater Sol Cells 91:1765–1774Hoch LB, Wood TE, O’Brien PG, Liao K, Reyes LM, Mims CA, Ozin GA (2014) The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Adv Sci 1:1400013Li M, Li P, Chang K, Wang T, Liu L, Kang Q, Ouyang S, Ye J (2015) Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. Chem Commun 51:7645–7648Tahir M, Amin NS (2015) Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor. Appl Catal A 493:90–102Tahir M, Amin NS (2016) Performance analysis of nanostructured NiO–In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor. Chem Eng J 285:635–649Ahmed N, Shibata Y, Taniguchi T, Izumi Y (2011) Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M = aluminum, gallium) layered double hydroxides. J Catal 279:123–135Ahmed N, Morikawa M, Izumi Y (2012) Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts. Catal Today 185:263–269Yang C-C, Vernimmen J, Meynen V, Cool P, Mul G (2011) Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15. J Catal 284:1–8Thampi KR, Kiwi J, GrĂ€tzel M (1987) Methanation and photo-methanation of carbon-dioxide at room-temperature and atmospheric pressure. Nature 327:506–508O’Brien PG, Sandhel A, Wood TE, Jelle AA, Hoch LB, Perovic DD, Mims CA, Ozin GA (2014) Photomethanation of gaseous CO2 over RU/silicon nanowire catalysts with visible and near-infrared photons. Adv Sci 1:1400001Meng X, Wang T, Liu L, Ouyang S, Li P, Hu H, Kako T, Iwai H, Tanaka A, Ye J (2014) Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew Chem Int Ed 53:11478–11482Sastre F, Puga AV, Liu L, Corma A, GarcĂ­a H (2014) Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J Am Chem Soc 136:6798–6801Hong J, Zhang W, Ren J, Xu R (2013) Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal Methods 5:1086–1097Yang C-C, Yu Y-H, van der Linden B, Wu JCS, Mul G (2010) Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction. J Am Chem Soc 132:8398–8406Kohno Y, Tanaka T, Funabiki T, Yoshida S (1998) Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. J Chem Soc Faraday Trans 94:1875–1880Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108:346–354Zhang H, Wang T, Wang J, Liu H, Dao TD, Li M, Liu G, Meng X, Chang K, Shi L, Nagao T, Ye J (2016) Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv Mater 28:3703–3710Morikawa M, Ahmed N, Yoshida Y, Izumi Y (2014) Photoconversion of carbon dioxide in zinc-copper-gallium layered double hydroxides: the kinetics to hydrogen carbonate and further to CO/methanol. Appl Catal B 144:561–569Sabatier P (1910) Making methane or mixtures of methane and hydrogen, US Pat. 956734Melsheimer J, Guo W, Ziegler D, Wesemann M, Schlögl R (1991) Methanation of carbon dioxide over Ru/Titania at room temperature: explorations for a photoassisted catalytic reaction. Catal Lett 11:157–168Lin X, Yang K, Si R, Chen X, Dai W, Fu X (2014) Photoassisted catalytic methanation of CO in H2-rich stream over Ru/TiO2. Appl Catal B 147:585–591Lin X, Lin L, Huang K, Chen X, Dai W, Fu X (2015) CO methanation promoted by UV irradiation over Ni/TiO2. Appl Catal B 168–169:416–422Sastre F, Oteri M, Corma A, GarcĂ­a H (2013) Photocatalytic water gas shift using visible or simulated solar light for the efficient, room-temperature hydrogen generation. Energy Environ Sci 6:2211–2215Sastre F, Corma A, GarcĂ­a H (2013) Visible-light photocatalytic conversion of carbon monoxide to methane by nickel(ii) oxide. Angew Chem Int Ed 52:12983–12987Zhao Y, Zhao B, Liu J, Chen G, Gao R, Yao S, Li M, Zhang Q, Gu L, Xie J, Wen X, Wu L-Z, Tung C-H, Ma D, Zhang T (2016) Oxide-modified nickel photocatalyst for the production of hydrocarbons in visible light. Angew. Chem. Int. Ed. 55:4215–4219Albero J, Garcia H, Corma A (2016) Temperature dependence of solar light assisted CO2 reduction on Ni based photocatalyst. Top Catal 59:787–79
    • 

    corecore