47 research outputs found

    Are female students in general and nursing students more ready for teamwork and interprofessional collaboration in healthcare?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interprofessional Education (IPE) is now spreading worldwide and many universities are now including IPE in their curricula. The aim of this study was to investigate whether or not such student characteristics as gender, previous working experience in healthcare, educational progress and features of the learning environment, such as educational programmes and curriculum design, have an impact on their open-mindedness about co-operation with other professions.</p> <p>Methods</p> <p>Medical and nursing students at two Swedish universities were invited to fill in the Readiness for Interprofessional Learning Scale (RIPLS). Totally, 955 students were invited and 70.2% (n = 670) participated in the study. A factor analysis of the RIPLS revealed four item groupings (factors) for our empirical data, but only one had sufficient internal consistency. This factor was labelled "Team Player".</p> <p>Results</p> <p>Regardless of the educational programme, female students were more positive to teamwork than male students. Nursing students in general displayed more positive beliefs about teamwork and collaboration than medical students. Exposure to different interprofessional curricula and previous exposure to interprofessional education were only to a minor extent associated with a positive attitude towards teamwork. Educational progress did not seem to influence these beliefs.</p> <p>Conclusions</p> <p>The establishment of interprofessional teamwork is a major challenge for modern healthcare. This study indicates some directions for more successful interprofessional education. Efforts should be directed at informing particularly male medical students about the need for teamwork in modern healthcare systems. The results also imply that study of other factors, such as the student's personality, is needed for fully understanding readiness for teamwork and interprofessional collaboration in healthcare. We also believe that the RIPL Scale still can be further adjusted.</p

    Common Genetic Variation And Age at Onset Of Anorexia Nervosa

    Get PDF
    Background Genetics and biology may influence the age at onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to AN age at onset and to investigate the genetic associations between age at onset of AN and age at menarche. Methods A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed which included 9,335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age at onset, early-onset AN (< 13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses. Results Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (SNP-h2) were 0.01-0.04 for age at onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early- and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age at onset and early-onset AN estimated from independent GWASs significantly predicted age at onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early-onset AN. Conclusions Our results provide evidence consistent with a common variant genetic basis for age at onset and implicate biological pathways regulating menarche and reproduction.Peer reviewe

    Multi-annual modes in the 20th century temperature variability in reanalyses and CMIP5 models

    No full text
    A performance expectation is that Earth system models simulate well the climate mean state and the climate variability. To test this expectation, we decompose two 20th century reanalysis data sets and 12 CMIP5 model simulations for the years 1901–2005 of the monthly mean near-surface air temperature using randomised multi-channel singular spectrum analysis (RMSSA). Due to the relatively short time span, we concentrate on the representation of multi-annual variability which the RMSSA method effectively captures as separate and mutually orthogonal spatio-temporal components. This decomposition is a unique way to separate statistically significant quasi-periodic oscillations from one another in high-dimensional data sets.The main results are as follows. First, the total spectra for the two reanalysis data sets are remarkably similar in all timescales, except that the spectral power in ERA-20C is systematically slightly higher than in 20CR. Apart from the slow components related to multi-decadal periodicities, ENSO oscillations with approximately 3.5- and 5-year periods are the most prominent forms of variability in both reanalyses. In 20CR, these are relatively slightly more pronounced than in ERA-20C. Since about the 1970s, the amplitudes of the 3.5- and 5-year oscillations have increased, presumably due to some combination of forced climate change, intrinsic low-frequency climate variability, or change in global observing network. Second, none of the 12 coupled climate models closely reproduce all aspects of the reanalysis spectra, although some models represent many aspects well. For instance, the GFDL-ESM2M model has two nicely separated ENSO periods although they are relatively too prominent as compared with the reanalyses. There is an extensive Supplement and YouTube videos to illustrate the multi-annual variability of the data sets

    Analysis of COSIMA spectra: Bayesian approach

    No full text
    We describe the use of Bayesian analysis methods applied to time-of-flight secondary ion mass spectrometer (TOF-SIMS) spectra. The method is applied to the COmetary Secondary Ion Mass Analyzer (COSIMA) TOF-SIMS mass spectra where the analysis can be broken into subgroups of lines close to integer mass values. The effects of the instrumental dead time are discussed in a new way. The method finds the joint probability density functions of measured line parameters (number of lines, and their widths, peak amplitudes, integrated amplitudes and positions). In the case of two or more lines, these distributions can take complex forms. The derived line parameters can be used to further calibrate the mass scaling of TOF-SIMS and to feed the results into other analysis methods such as multivariate analyses of spectra. We intend to use the method, first as a comprehensive tool to perform quantitative analysis of spectra, and second as a fast tool for studying interesting targets for obtaining additional TOF-SIMS measurements of the sample, a property unique to COSIMA. Finally, we point out that the Bayesian method can be thought of as a means to solve inverse problems but with forward calculations, only with no iterative corrections or other manipulation of the observed data

    The Internal-Brooding Apparatus in the Bryozoan Genus Cauloramphus (Cheilostomata: Calloporidae) and Its Inferred Homology to Ovicells

    Get PDF
    We studied by SEM the external morphology of the ooecium in eight bryozoans of the genus Cauloramphus Norman, 1903 (Cheilostomata, Calloporidae): C. spinifer, C. variegatus, C. magnus, C. multiavicularia, C. tortilis, C. cryptoarmatus, C. niger, and C. multispinosus, and by sectioning and light microscopy the anatomy of the brooding apparatus of C. spinifer, C. cryptoarmatus, and C. niger. These species all have a brood sac, formed by invagination of the non-calcified distal body wall of the maternal zooid, located in the distal half of the maternal (egg-producing) autozooid, and a vestigial, maternally budded kenozooidal ooecium. The brood sac comprises a main chamber and a long passage (neck) opening externally independently of the introvert. The non-calcified portion of the maternal distal wall between the neck and tip of the zooidal operculum is involved in closing and opening the brood sac, and contains both musculature and a reduced sclerite that suggest homology with the ooecial vesicle of a hyperstomial ovicell. We interpret the brooding apparatus in Cauloramphus as a highly modified form of cheilostome hyperstomial ovicell, as both types share 1) a brood chamber bounded by 2) the ooecium and 3) a component of the distal wall of the maternal zooid. We discuss Cauloramphus as a hypothetical penultimate stage in ovicell reduction in calloporid bryozoans. We suggest that the internal-brooding genus Gontarella, of uncertain taxonomic affinities, is actually a calloporid and represents the ultimate stage in which no trace of the ooecium remains. Internal brooding apparently evolved several times independently within the Calloporidae

    High-throughput DNA methylation analysis in anorexia nervosa confirms TNXB hypermethylation.

    Get PDF
    Objectives: Patients with anorexia nervosa (AN) are ideally suited to identify differentially methylated genes in response to starvation.Methods: We examined high-throughput DNA methylation derived from whole blood of 47 females with AN, 47 lean females without AN and 100 population-based females to compare AN with both controls. To account for different cell type compositions, we applied two reference-free methods (FastLMM-EWASher, RefFreeEWAS) and searched for consensus CpG sites identified by both methods. We used a validation sample of five monozygotic AN-discordant twin pairs.Results: Fifty-one consensus sites were identified in AN vs. lean and 81 in AN vs. population-based comparisons. These sites have not been reported in AN methylation analyses, but for the latter comparison 54/81 sites showed directionally consistent differential methylation effects in the AN-discordant twins. For a single nucleotide polymorphism rs923768 in CSGALNACT1 a nearby site was nominally associated with AN. At the gene level, we confirmed hypermethylated sites at TNXB. We found support for a locus at NR1H3 in the AN vs. lean control comparison, but the methylation direction was opposite to the one previously reported.Conclusions: We confirm genes like TNXB previously described to comprise differentially methylated sites, and highlight further sites that might be specifically involved in AN starvation processes
    corecore