768 research outputs found
The Green Computing Observatory: a data curation approach for green IT
International audienceThe Green Computing Observatory (GCO) is a collaborative effort to provide the scientific community with a comprehensive set of traces of energy consumption of a production cluster. These traces include the detailed monitoring of the hardware and software, as well as global site information such as the overall consumption and overall cooling. The acquired data is transformed into an XML format built from a specifically designed ontology and published through the Grid Observatory website
Tribochemistry of phosphorus additives: Experiments and first-principles calculations
Organophosphorus compounds are common additives included in liquid lubricants for many applications, in particular automotive applications. Typically, organic phosphites function as friction-modifiers whereas phosphates as anti-wear additives. While the antiwear action of phosphates is now well understood, the mechanism by which phosphites reduce friction is still not clear. Here we study the tribochemistry of both phosphites and phosphates using gas phase lubrication (GPL) and elucidate the microscopic mechanisms that lead to the better frictional properties of phosphites. In particular, by in situ spectroscopic analysis we show that the friction reduction is connected to the presence of iron phosphide, which is formed by tribochemical reactions involving phosphites. The functionality of elemental phosphorus in reducing the friction of iron-based interfaces is elucidated by first principle calculations. In particular, we show that the work of separation and shear strength of iron dramatically decrease by increasing the phosphorus concentration at the interface. These results suggest that the functionality of phosphites as friction modifiers may be related to the amount of elemental phosphorus that they can release at the tribological interface
Contribution of the analysis of diurnal cycles for understanding the mean seasonal cycle of rainforest photosynthetic activity in Central Africa. [P-2215-10]
Global carbon, water and energy cycles are substantially driven by vegetation phenology. In particular tropical rainforests have been shown to be a key component of the climate system as they act as major water vapor sources and carbon dioxide sink. For these reasons their evolution in response to both human pressure and climate change is critical. As compared to the Amazonian and Asian rainforests, the rainforest of Central Africa experiences slower deforestation rates, so that its main threat for the next decades might come from climate change. So far, the response and sensitivity of the Central Africa rainforest to the mean seasonal evolution and inter-annual variability of climate has attracted little interest. Indeed, most of the studies focus on its Amazonian counterpart and suggest that solar irradiation is the main driver of the annual and inter-annual variations of rainforest photosynthetic activity, and the Central Africa climate itself is not well documented. As a first step towards a better understanding of the Central Africa rainforest sensitivity to present-day climate variability and response to climate change, this study performs for a target region located between 0-5°N/12- 19°E (thus documenting forest areas from 5 countries) and using space borne observations, a detailed analysis of the rainforest photosynthetic activity mean seasonal cycle comparing it with those of climate variables considered as potential drivers, i.e. rainfall, cloudiness and solar irradiation. Several key points emerge from our study. First, the seasonal cycles of photosynthetic activity (EVI MODIS) and rainfall over our target region are both bimodal. However, the highest peak of EVI (March-May) coincides with the driest of the two rainy seasons while the lowest peak of EVI (September-October) coincides with the wettest of the two rainy seasons. Second, the two rainy seasons are not associated with two distinct lows in total solar irradiation and two distinct peaks in total cloudiness: the first rainy season (March-May) which is less rainy as compared to the second one (September-October), is also less cloudy and receives more total solar irradiation. This might explain the higher EVI values recorded. Third, the high total cloudiness recorded throughout the seasonal cycle actually hides marked seasonal variations in the frequency of the 5 main types of clouds analyzed. These cloud types have specific diurnal cycles which control those of solar irradiation (thus the daily light and energy available for photosynthesis), but also influence the remote sensed photosynthetic activity data (or index). Our results clearly show that (1) nor the two dry seasons, nor the two rainy seasons do compare in terms of mean rainfall, cloudiness, solar irradiation and temperature, and (2) water and light availability have a respective weight in the Central Africa rainforest photosynthetic activity which evolves throughout the seasonal cycle. They also suggest that any evolution, due to climate change, of the complex diurnal cycles of rainfall, nebulosity and solar irradiation which characterize the equatorial climate regimes might perturb the rainforest phenology and enhance these ecosystems vulnerability. (Texte intégral
WARNING: Physics Envy May Be Hazardous To Your Wealth!
The quantitative aspirations of economists and financial analysts have for
many years been based on the belief that it should be possible to build models
of economic systems - and financial markets in particular - that are as
predictive as those in physics. While this perspective has led to a number of
important breakthroughs in economics, "physics envy" has also created a false
sense of mathematical precision in some cases. We speculate on the origins of
physics envy, and then describe an alternate perspective of economic behavior
based on a new taxonomy of uncertainty. We illustrate the relevance of this
taxonomy with two concrete examples: the classical harmonic oscillator with
some new twists that make physics look more like economics, and a quantitative
equity market-neutral strategy. We conclude by offering a new interpretation of
tail events, proposing an "uncertainty checklist" with which our taxonomy can
be implemented, and considering the role that quants played in the current
financial crisis.Comment: v3 adds 2 reference
Elliptic logarithms, diophantine approximation and the Birch and Swinnerton-Dyer conjecture
Most, if not all, unconditional results towards the abc-conjecture rely
ultimately on classical Baker's method. In this article, we turn our attention
to its elliptic analogue. Using the elliptic Baker's method, we have recently
obtained a new upper bound for the height of the S-integral points on an
elliptic curve. This bound depends on some parameters related to the
Mordell-Weil group of the curve. We deduce here a bound relying on the
conjecture of Birch and Swinnerton-Dyer, involving classical, more manageable
quantities. We then study which abc-type inequality over number fields could be
derived from this elliptic approach.Comment: 20 pages. Some changes, the most important being on Conjecture 3.2,
three references added ([Mas75], [MB90] and [Yu94]) and one reference updated
[BS12]. Accepted in Bull. Brazil. Mat. So
Security analyst networks, performance and career outcomes
Authors' draft. Final version to be published in The Journal of Finance. Available online at http://onlinelibrary.wiley.com/Using a sample of 42,376 board directors and 10,508 security analysts we construct a social
network, mapping the connections between analysts and directors, between directors, and
between analysts. We use social capital theory and techniques developed in social network
analysis to measure the analyst’s level of connectedness and investigate whether these
connections provide any information advantage to the analyst. We find that better-connected
(better-networked) analysts make more accurate, timely, and bold forecasts. Moreover, analysts
with better network positions are less likely to lose their job, suggesting that these analysts are
more valuable to their brokerage houses. We do not find evidence that analyst innate forecasting
ability predicts an analyst’s future network position. In contrast, past forecast optimism has a
positive association with building a better network of connections
Long-Term climate change commitment and reversibility: An EMIC intercomparison
This is the final version of the article. Available from the American Meteorological Society via the DOI in this record.This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. MostEMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6-6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs forRCPs 4.5-8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination ofCO2 emissions in allEMICs.Restoration of atmosphericCO2 fromRCPto preindustrial levels over 100-1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2. © 2013 American Meteorological Society.KZ and AJW acknowledge support from the National Science and Engineering Research Council (NSERC) Discovery Grant Program. AJW acknowledges support from NSERC's G8 Research Councils Initiative on Multilateral Research Funding Program. AVE and IIM were supported by the President of Russia Grant 5467.2012.5, by the Russian Foundation for Basic Research, and by the programs of the Russian Academy of Sciences. EC, TF, HG, and GPB acknowledge support from the Belgian Federal Science Policy Office. FJ, RS, and MS acknowledge support by the Swiss National Science Foundation and by the European Project CARBOCHANGE (Grant 264879), which received funding from the European Commission's Seventh Framework Programme (FP7/2007–2013). PBH and NRE acknowledge support from EU FP7 Grant ERMITAGE 265170
Multiparametric determination of genes and their point mutations for identification of beta-lactamases
Does a currency union need a capital market union?
We compare risk sharing in response to demand and supply shocks in four types of currency unions: segmented markets; a money market union; a capital market union; and complete financial markets. We show that a money market union is efficient at sharing domestic demand shocks (deleveraging, fiscal consolidation), while a capital market union is necessary to share supply shocks (productivity and quality shocks). In a numerical exercise, we find that the welfare gain of moving from segmented markets to a money market union is of roughly similar magnitude to that of moving from a money market to a capital market union
- …
