7 research outputs found

    Preliminary Investigation of Myo-Inositol Phosphates Produced by ASUIA279 Phytase on MCF-7 Cancer Cells

    Get PDF
    Phytate or myo-inositol hexakisphosphates (IP6) is widely distributed in plants like rice brans. The production of myo-inositol phosphate intermediates has received much attention due to the remarkable potential health benefits offered by the compounds. In this study, the cytotoxicity of the partially purified myo-inositol phosphate fractions and commercial IP1 and IP6 were investigated against MCF-7 breast cancer cell lines. The study showed that the commercial standard IP1 and IP6 showed good inhibition towards the MCF-7 cell line. The MCF-7 cells growth was inhibited in minimum concentration of myo-inositol phosphates (<1000 µg/ml). However, no inhibition observed on the MCF-7 cell line by the myo-inositol phosphates fractions partially purified from rice bran at concentration <1000 ?g/ml. The inhibition of MCF-7 was only observed at concentration more than 30 mg/ml with more than 40% cells were inhibited. This indicates that the partially purified rice bran myo-inositol phosphates degraded by ASUIA279 phytase on MCF-7 breast cancer cells exhibit positive results towards the inhibition of cancer cells growth at relatively high concentration.. KEYWORDS: myo-inositol phosphates, phytase, MCF-7,  cancer ABSTRAK: Fitat atau myo-inositol hexakisphosphate (IP6) dikenali umum teragih di dalam tumbuhan seperti dedak padi. Penghasilan perantaraan fosfat myo-inositol mendapat perhatian memandangkan ia berpotensi tinggi dalam kesihatan. Dalam kajian ini, kesitotoksikan sebahagian daripada fosfat myo-inositol separa tulen, IP1 komersil dan IP6 komersil dikaji terhadap produk yang berupa sel kekal (cell lines) kanser payu dara MCF-7. Tumbesaran sel MCF-7 direncatkan dalam pekatan minima fosfat myo-inositol (<1000 μg/ml). Tetapi, tidak ada perencatan dilihat terhadap sel kekal MCF-7 oleh sebahagian fosfat myo-inositol separa tulen daripada dedak padi pada kepekatan <1000 mg/ml. Perencatan MCF-7 hanya dilihat pada kepekatan lebih daripada 30 mg/ml dengan lebih daripada 40% sel terencat. Ini menunjukkan bahawa fosfat myo-inositol daripada dedak padi separa tulen terdegradasi oleh fitat ASUIA279 terhadap sel kanser MCF-7 dimana ia menunjukkan keputusan positif terhadap perencatan tumbesaran sel kanser pada kepekatan tinggi

    Molecular Cloning of Phytase Gene from ASUIA279 and Its Expression in Pichia pastoris System

    No full text
    Phytases catalyze the hydrolysis of phytate (myo-inositol hexakisphosphate), one of the major storage form of phosphate in plants, with subsequent release of myo-inositol, phosphate and phytate-bound minerals. Non-ruminant animals such as chicken, swine and fish can't use the organic phosphorus and minerals from their diet because there is no phytase activity in their digestive tract. Phytate degrading enzyme is added to the animal feed diet to improve phosphorus availability from the dietary phytate and at the same time this lessen the phosphate pollution level in areas of intensive animal production as the phosphate would not be excreted out to the environment. ASUIA279, a bacterial strain isolated from Malaysian soil has potentially shown good phytase activity. In the present work, the gene encoding for phytase has been amplified from the plasmid DNA of recombinant ASUIA279(5) obtained from a previous study (unpublished data) by a polymerase chain reaction (PCR) methodology. The amplified phytase gene was extracted, purified then cloned into the pPICZA plasmid and transformed into Pichia pastorisX-33 strain for enzyme production. ABSTRAK: Fitase pemangkinan hidrolisis fitat (myo-inositol hexakisphosphate), merupakan salah satu cara penyimpanan utama fosfat dalam tumbuhan, dengan pelepasan berturut myo-inositol , fosfat dan galian terikat fitat. Haiwan bukan ruminan seperti ayam, khinzir dan ikan tidak dapat memanfaatkan fosforus organik serta galian yang diperolehi daripada makanan kerana tidak mempunyai aktiviti fitase di dalam saluran pencernaan mereka. Enzim pengecilan fitase dicampurkan ke dalam pemakanan haiwan untuk mempertingkatkan keperolehan fosforus dari fitat diet. Pada masa yang sama ia dapat mengurangkan tahap pencemaran fosfat di kawasan yang terdapat penternakan haiwan secara intensif agar fosfat tidak dikumuhkan ke persekitaran. ASUIA279, satu strain bakteria yang diasingkan daripada tanih di Malaysiamenunjukkan aktiviti fitase yang memberansangkan. Buat masa kini, pengekodan gen fitase telah diperkuatkan dengan plasmid DNA dari ASUIA279(5), rekombinan yang diperolehi daripada kajian terdahulu (data tak diterbitkan) berdasarkan kaedah tindak balas berantai polimerase (polymerase chain reaction (PCR)). Gen fitase yang diperkuatkan, ditulenkan dan kemudian diklonkan menjadi plasmid pPICZαA dan berubah menjadi strain Pichia pastorisX-33 untuk penghasilan enzim. KEYWORDS:  Phytase, animal feed, pollution, polymerase chain reaction (PCR), Pichia pastori

    Nejnovější pokroky v mechanických vlastnostech biopolymerních kompozitů: přehled

    No full text
    V posledních letech získávají biopolymery velkou pozornost s perspektivou vývoje vysoce výkonných biokompozitů s nízkým dopadem na životní prostředí díky jejich jedinečným a užitečným vlastnostem, jako je hojná dostupnost, obnovitelnost, ekologičnost a nízká hmotnost. Očekává se, že biopolymerní kompozity nahradí mnoho konvenčních materiálů v optických, biologických a inženýrských aplikacích, protože investice a výzkum těchto materiálů se podstatně zvýší. Požadovaných vlastností biopolymerních kompozitů lze dosáhnout smícháním vhodného biopolymeru s vhodnými aditivy, což připravuje cestu pro interakci polymer-plnivo. Podle potřeb aplikace lze upravit různé parametry, jako je chemické složení, kinetika rozkladu a mechanické vlastnosti biopolymerních kompozitů. Interakční interakce mezi biopolymerem a nanofillerem mají významný vliv na mechanické vlastnosti biopolymerních kompozitů. Tento přehled je zaměřen na nejnovější pokroky v mechanických vlastnostech různých biopolymerních kompozitů. V první části tohoto přehledu byly diskutovány neznámé techniky mechanické charakterizace, jako je únavový test, nanoindentace a nedestruktivní testování biopolymerních kompozitů. V pozdější části byly diskutovány různé populární techniky zpracování biokompozitní výroby. Kromě toho bylo v závěrečné části popsáno několik výzev spojených se zpracováním a mechanickou výkonností biopolymerních kompozitů. Tento přehled je zaměřen na nejnovější pokroky v mechanických vlastnostech různých biopolymerních kompozitů. V první části tohoto přehledu byly diskutovány neznámé techniky mechanické charakterizace, jako je únavový test, nanoindentace a nedestruktivní testování biopolymerních kompozitů. V pozdější části byly diskutovány různé populární techniky zpracování biokompozitní výroby. Kromě toho bylo v závěrečné části popsáno několik výzev spojených se zpracováním a mechanickou výkonností biopolymerních kompozitů. Tento přehled je zaměřen na nejnovější pokroky v mechanických vlastnostech různých biopolymerních kompozitů. V první části tohoto přehledu byly diskutovány neznámé techniky mechanické charakterizace, jako je únavový test, nanoindentace a nedestruktivní testování biopolymerních kompozitů. V pozdější části byly diskutovány různé populární techniky zpracování biokompozitní výroby. Kromě toho bylo v závěrečné části popsáno několik výzev spojených se zpracováním a mechanickou výkonností biopolymerních kompozitů. Diskutovalo se o nanoindentaci a nedestruktivním testování biopolymerních kompozitů. V pozdější části byly diskutovány různé populární techniky zpracování biokompozitní výroby. Kromě toho bylo v závěrečné části popsáno několik výzev spojených se zpracováním a mechanickou výkonností biopolymerních kompozitů. Diskutovalo se o nanoindentaci a nedestruktivním testování biopolymerních kompozitů. V pozdější části byly diskutovány různé populární techniky zpracování biokompozitní výroby. Kromě toho bylo v závěrečné části popsáno několik výzev spojených se zpracováním a mechanickou výkonností biopolymerních kompozitů.In recent years, biopolymers are getting wide attention with the perspective of developing high-performance biocomposites with low environmental impact owing to their unique and useful features such as abundant availability, renewability, ecofriendliness and lightweight. Biopolymer composites are expected to replace many conventional materials in optical, biological, and engineering applications as the investment and research on these materials increase substantially. The desired properties of biopolymer composites can be achieved by blending an appropriate biopolymer with suitable additives, which pave the way for polymer-filler interaction. A variety of parameters such as chemical composition, degradation kinetics and mechanical properties of biopolymer composites can be tailored according to the application needs. The interfacial interactions between the biopolymer and the nanofiller have a significant effect on the mechanical properties of biopolymer composites. The present review is focused on the recent advances in the mechanical properties of various biopolymer composites. In the first part of this review, the unfamiliar mechanical characterization techniques such as fatigue test, nanoindentation and nondestructive testing of biopolymer composites have been discussed. In the later part, the various popular processing techniques of biocomposite fabrication have been discussed. In addition, in the conclusion section, few challenges associated with the processing and mechanical performance of biopolymer composites have been describe

    Nanoadsorbents for wastewater treatment: next generation biotechnological solution

    No full text
    corecore