128 research outputs found

    Influence of star-forming galaxy selection on the galaxy main sequence

    Full text link
    This work aims to determine how the galaxy main sequence (MS) changes using seven different commonly used methods to select the star-forming galaxies within VIPERS data over 0.5≀z<1.20.5 \leq z < 1.2. The form and redshift evolution of the MS will then be compared between selection methods. The star-forming galaxies were selected using widely known methods: a specific star-formation rate (sSFR), Baldwin, Phillips and Terlevich (BPT) diagram, 4000\AA\ spectral break (D4000) cut and four colour-colour cuts: NUVrJ, NUVrK, u-r, and UVJ. The main sequences were then fitted for each of the seven selection methods using a Markov chain Monte Carlo forward modelling routine, fitting both a linear main sequence and a MS with a high-mass turn-over to the star-forming galaxies. This was done in four redshift bins of 0.50≀z<0.620.50 \leq z < 0.62, 0.62≀z<0.720.62 \leq z < 0.72, 0.72≀z<0.850.72 \leq z < 0.85, and 0.85≀z<1.200.85 \leq z < 1.20. The slopes of all star-forming samples were found to either remain constant or increase with redshift, and the scatters were approximately constant. There is no clear redshift dependency of the presence of a high-mass turn-over for the majority of samples, with the NUVrJ and NUVrK being the only samples with turn-overs only at low redshift. No samples have turn-overs at all redshifts. Star-forming galaxies selected with sSFR and u-r are the only samples to have no high-mass turn-over in all redshift bins. The normalisation of the MS increases with redshift, as expected. The scatter around the MS is lower than the ≈\approx0.3~dex typically seen in MS studies for all seven samples. The lack, or presence, of a high-mass turn-over is at least partially a result of the method used to select star-forming galaxies. However, whether a turn-over should be present or not is unclear.Comment: 20 pages, 3 appendices, 14 figures, 5 tables, accepted for publication in Astronomy & Astrophysic

    Superintegrability with third order integrals of motion, cubic algebras and supersymmetric quantum mechanics I:Rational function potentials

    Get PDF
    We consider a superintegrable Hamiltonian system in a two-dimensional space with a scalar potential that allows one quadratic and one cubic integral of motion. We construct the most general cubic algebra and we present specific realizations. We use them to calculate the energy spectrum. All classical and quantum superintegrable potentials separable in Cartesian coordinates with a third order integral are known. The general formalism is applied to quantum reducible and irreducible rational potentials separable in Cartesian coordinates in E2. We also discuss these potentials from the point of view of supersymmetric and PT-symmetric quantum mechanics.Comment: 33 pages, references added, misprints correcte

    The VIPERS Multi-Lambda Survey. II. Diving with massive galaxies in 22 square degrees since z = 1.5

    Get PDF
    We investigate the evolution of the galaxy stellar mass function (SMF) and stellar mass density from redshift z=0.2 to z=1.5 of a KABK_{AB}<22-selected sample with highly reliable photometric redshifts and over an unprecedentedly large area. Our study is based on NIR observations carried out with WIRCam at CFHT over the footprint of the VIPERS spectroscopic survey and benefits from the high quality optical photometry from the CFHTLS and UV observations with the GALEX satellite. The accuracy of our photometric redshifts is σz\sigma_z < 0.03 and 0.05 for the bright (iABi_{AB}22.5) samples, respectively. The SMF is measured with ~760,000 galaxies down to KsK_s=22 and over an effective area of ~22.4 deg2^2, the latter of which drastically reduces the statistical uncertainties (i.e. Poissonian error & cosmic variance). We point out the importance of a careful control of the photometric calibration, whose impact becomes quickly dominant when statistical uncertainties are reduced, which will be a major issue for future generation of cosmological surveys with, e.g. EUCLID or LSST. By exploring the rest-frame (NUV-r) vs (r-KsK_s) color-color diagram separating star-forming and quiescent galaxies, (1) we find that the density of very massive log(M∗/M⊙M_*/ M_{\odot}) > 11.5 galaxies is largely dominated by quiescent galaxies and increases by a factor 2 from z~1 to z~0.2, which allows for additional mass assembly via dry mergers, (2) we confirm a scenario where star formation activity is impeded above a stellar mass log(MSF∗/M⊙M^*_{SF} / M_{\odot}) = 10.64±\pm0.01, a value that is found to be very stable at 0.2 < z < 1.5, (3) we discuss the existence of a main quenching channel that is followed by massive star-forming galaxies, and finally (4) we characterise another quenching mechanism required to explain the clear excess of low-mass quiescent galaxies observed at low redshift.Comment: 22 pages, 20 figures. Accepted for publication in A&A. Version to be publishe

    The VIPERS Multi-Lambda Survey. I. UV and NIR Observations, multi-color catalogues and photometric redshifts

    Get PDF
    We present observations collected in the CFHTLS-VIPERS region in the ultraviolet (UV) with the GALEX satellite (far and near UV channels) and the near infrared with the CFHT/WIRCam camera (KsK_s-band) over an area of 22 and 27 deg2^2, respectively. The depth of the photometry was optimized to measure the physical properties (e.g., SFR, stellar masses) of all the galaxies in the VIPERS spectroscopic survey. The large volume explored by VIPERS will enable a unique investigation of the relationship between the galaxy properties and their environment (density field and cosmic web) at high redshift (0.5 < z < 1.2). In this paper, we present the observations, the data reductions and the build-up of the multi-color catalogues. The CFHTLS-T0007 (gri-{\chi}^2) images are used as reference to detect and measure the KsK_s-band photometry, while the T0007 u-selected sources are used as priors to perform the GALEX photometry based on a dedicated software (EMphot). Our final sample reaches NUVABNUV_{AB}~25 (at 5{\sigma}) and KABK_{AB}~22 (at 3{\sigma}). The large spectroscopic sample (~51,000 spectroscopic redshifts) allows us to highlight the robustness of our star/galaxy separation, and the reliability of our photometric redshifts with a typical accuracy σz≀\sigma_z \le 0.04 and a catastrophic failure rate {\eta} < 2% down to i~23. We present various tests on the KsK_s band completeness and photometric redshift accuracy by comparing with existing, overlapping deep photometric catalogues. Finally, we discuss the BzK sample of passive and active galaxies at high redshift and the evolution of galaxy morphology in the (NUV-r) vs (r-K_s) diagram at low redshift (z < 0.25) thanks to the high image quality of the CFHTLS. The images, catalogues and photometric redshifts for 1.5 million sources (down to NUV≀NUV \le 25 or Ks≀K_s \le 22) are released and available at this URL: http://cesam.lam.fr/vipers-mls/Comment: 14 pages, 16 figures. Accepted for publication in A&A. Version to be publishe

    The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field

    Get PDF
    We present new constraints on the relationship between galaxies and their host dark matter halos, measured from the location of the peak of the stellar-to-halo mass ratio (SHMR), up to the most massive galaxy clusters at redshift z∌0.8z\sim0.8 and over a volume of nearly 0.1~Gpc3^3. We use a unique combination of deep observations in the CFHTLenS/VIPERS field from the near-UV to the near-IR, supplemented by ∌60 000\sim60\,000 secure spectroscopic redshifts, analysing galaxy clustering, galaxy-galaxy lensing and the stellar mass function. We interpret our measurements within the halo occupation distribution (HOD) framework, separating the contributions from central and satellite galaxies. We find that the SHMR for the central galaxies peaks at Mh,peak=1.9−0.1+0.2×1012M⊙M_{\rm h, peak} = 1.9^{+0.2}_{-0.1}\times10^{12} M_{\odot} with an amplitude of 0.0250.025, which decreases to ∌0.001\sim0.001 for massive halos (Mh>1014M⊙M_{\rm h} > 10^{14} M_{\odot}). Compared to central galaxies only, the total SHMR (including satellites) is boosted by a factor 10 in the high-mass regime (cluster-size halos), a result consistent with cluster analyses from the literature based on fully independent methods. After properly accounting for differences in modelling, we have compared our results with a large number of results from the literature up to z=1z=1: we find good general agreement, independently of the method used, within the typical stellar-mass systematic errors at low to intermediate mass (M⋆<1011M⊙{M}_{\star} < 10^{11} M_{\odot}) and the statistical errors above. We have also compared our SHMR results to semi-analytic simulations and found that the SHMR is tilted compared to our measurements in such a way that they over- (under-) predict star formation efficiency in central (satellite) galaxies.Comment: 31 pages, 18 figures, 4 table. Accepted for publication in MNRAS. Online material available at http://www.cfhtlens.or

    Decoding the IRX-\beta\ dust attenuation relation in star-forming galaxies at intermediate redshift

    Full text link
    We aim to understand what drives the IRX-\beta dust attenuation relation at intermediate redshift (0.5 < z < 0.8) in star-forming galaxies. We investigate the role of various galaxy properties in shaping this observed relation. We use robust [O ii] {\lambda}3727, [O iii] {\lambda}{\lambda}4959, 5007, and H\beta line detections of our statistical sample of 1049 galaxies to estimate the gas-phase metallicities. We derive key physical properties that are necessary to study galaxy evolution, such as the stellar masses and the star formation rates, using the spectral energy distribution fitting tool CIGALE. Equivalently, we study the effect of galaxy morphology (mainly the S\'ersic index n and galaxy inclination) on the observed IRX-\beta scatter. We also investigate the role of the environment in shaping dust attenuation in our sample. We find a strong correlation of the IRX-\beta relation on gas-phase metallicity in our sample, and also strong correlation with galaxy compactness characterized by the S\'ersic indexes. Correlations are also seen with stellar masses, specific star formation rates and the stellar ages of our sources. Metallicity strongly correlates with the IRX-\beta scatter, this also results from the older stars and higher masses at higher beta values. Galaxies with higher metallicities show higher IRX and higher beta values. The correlation with specific dust mass strongly shifts the galaxies away from the IRX-\beta relation towards lower \b{eta} values. We find that more compact galaxies witness a larger amount of attenuation than less compact galaxies. There is a subtle variation in the dust attenuation scatter between edge-on and face-on galaxies, but the difference is not statistically significant. Galaxy environments do not significantly affect dust attenuation in our sample of star-forming galaxies at intermediate redshift.Comment: 14 pages, 13 figures, accepted for publication in A&

    CFHTLenS and RCSLenS cross-correlation with Planck lensing detected in fourier and configuration space

    Get PDF
    We measure the cross-correlation signature between the Planck cosmic microwave background (CMB) lensing map and the weak lensing observations from both the Red-sequence Cluster Lensing Survey and the Canada–France–Hawaii Telescope Lensing Survey. In addition to a Fourier analysis, we include the first configuration-space detection, based on the estimators 〈ÎșCMBÎșgal〉 and 〈ÎșCMBÎłt〉. Combining 747.2 deg2 from both surveys, we find a detection significance that exceeds 4.2σ in both Fourier- and configuration-space analyses. Scaling the predictions by a free parameter A, we obtain APlanckCFHT=0.68±0.31 and APlanckRCS=1.31±0.33⁠. In preparation for the next generation of measurements similar to these, we quantify the impact of different analysis choices on these results. First, since none of these estimators probes the exact same dynamical range, we improve our detection by combining them. Secondly, we carry out a detailed investigation on the effect of apodization, zero-padding and mask multiplication, validated on a suite of high-resolution simulations, and find that the latter produces the largest systematic bias in the cosmological interpretation. Finally, we show that residual contamination from intrinsic alignment and the effect of photometric redshift error are both largely degenerate with the characteristic signal from massive neutrinos, however the signature of baryon feedback might be easier to distinguish. The three lensing data sets are publicly available

    CFHTLenS and RCSLenS cross-correlation with Planck lensing detected in fourier and configuration space

    Get PDF
    We measure the cross-correlation signature between the Planck cosmic microwave background (CMB) lensing map and the weak lensing observations from both the Red-sequence Cluster Lensing Survey and the Canada–France–Hawaii Telescope Lensing Survey. In addition to a Fourier analysis, we include the first configuration-space detection, based on the estimators 〈ÎșCMBÎșgal〉 and 〈ÎșCMBÎłt〉. Combining 747.2 deg2 from both surveys, we find a detection significance that exceeds 4.2σ in both Fourier- and configuration-space analyses. Scaling the predictions by a free parameter A, we obtain APlanckCFHT=0.68±0.31 and APlanckRCS=1.31±0.33⁠. In preparation for the next generation of measurements similar to these, we quantify the impact of different analysis choices on these results. First, since none of these estimators probes the exact same dynamical range, we improve our detection by combining them. Secondly, we carry out a detailed investigation on the effect of apodization, zero-padding and mask multiplication, validated on a suite of high-resolution simulations, and find that the latter produces the largest systematic bias in the cosmological interpretation. Finally, we show that residual contamination from intrinsic alignment and the effect of photometric redshift error are both largely degenerate with the characteristic signal from massive neutrinos, however the signature of baryon feedback might be easier to distinguish. The three lensing data sets are publicly available

    Darboux Transformations for SUSY Integrable Systems

    Full text link
    Several types of Darboux transformations for supersymmetric integrable systems such as the Manin-Radul KdV, Mathieu KdV and SUSY sine-Gordon equations are considered. We also present solutions such as supersolitons and superkinks.Comment: 13 pages. LaTeX209 with LamuPhys and EPSF packages, 3 figures. Contribution to the proceedings of the "Integrable Models and Supersymmetry" meeting held at Chicago on July'9

    The VIMOS Public Extragalactic Redshift Survey (VIPERS): PCA-based automatic cleaning and reconstruction of survey spectra

    Get PDF
    Identifying spurious reduction artefacts in galaxy spectra is a challenge for large surveys. We present an algorithm for identifying and repairing residual spurious features in sky-subtracted galaxy spectra with application to the VIPERS survey. The algorithm uses principal component analysis (PCA) applied to the galaxy spectra in the observed frame to identify sky line residuals imprinted at characteristic wavelengths. We further model the galaxy spectra in the rest-frame using PCA to estimate the most probable continuum in the corrupted spectral regions, which are then repaired. We apply the method to 90,000 spectra from the VIPERS survey and compare the results with a subset where careful editing was performed by hand. We find that the automatic technique does an extremely good job in reproducing the time-consuming manual cleaning and does it in a uniform and objective manner across a large data sample. The mask data products produced in this work are released together with the VIPERS second public data release (PDR-2).Comment: Find the VIPERS data release at http://vipers.inaf.i
    • 

    corecore