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Superintegrability with third order integrals of motion,
cubic algebras, and supersymmetric quantum mechanics.
I. Rational function potentials

Ian Marquettea�

Département de Physique et Centre de Recherche Mathématique, Université de Montréal,
C. P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada

�Received 17 July 2008; accepted 14 October 2008; published online 6 January 2009�

We consider a superintegrable Hamiltonian system in a two-dimensional space with
a scalar potential that allows one quadratic and one cubic integrals of motion. We
construct the most general cubic algebra and we present specific realizations. We
use them to calculate the energy spectrum. All classical and quantum superinte-
grable potentials separable in Cartesian coordinates with a third order integral are
known. The general formalism is applied to quantum reducible and irreducible
rational potentials separable in Cartesian coordinates in E2. We also discuss these
potentials from the point of view of supersymmetric and PT-symmetric quantum
mechanics. © 2009 American Institute of Physics. �DOI: 10.1063/1.3013804�

I. INTRODUCTION

In classical mechanics a Hamiltonian system with Hamiltonian H and integrals of motion Xa,

H =
1

2
gikpipk + V�x�,p��, Xa = fa�x�,p��, a = 1, . . . ,n − 1, �1.1�

is called completely integrable �or Liouville integrable� if it allows n integrals of motion �includ-
ing the Hamiltonian� that are well defined functions on phase space, are in involution �H ,Xa�p

=0, �Xa ,Xb�p=0, a ,b=1, . . . ,n−1, and are functionally independent ��,�p is a Poisson bracket�. A
system is superintegrable if it is integrable and allows further integrals of motion Yb�x� , p��,
�H ,Yb�p=0, b=n ,n+1, . . . ,n+k that are also well defined functions on phase space and the inte-
grals �H ,X1 , . . . ,Xn−1 ,Yn , . . . ,Yn+k� are functionally independent. A system is maximally superin-
tegrable if the set contains 2n−1 functions, quasimaximally superintegrable if it contains 2n−2,
and minimally superintegrable if it contains n+1 such integrals. The integrals Yb are not required
to be in evolution with X1 , . . . ,Xn−1 nor with each other. The same definitions apply in quantum
mechanics, but �H ,Xa ,Yb� are well defined quantum mechanical operators, assumed to form an
algebraically independent set.

Superintegrable systems appear in many domains of physics such as quantum chemistry,
condensed matter, and nuclear physics. The most well known examples of �maximally� superin-
tegrable systems are the Kepler–Coulomb1,2 system V�x��=� /r and the harmonic oscillator V�x��
=�r2.3,4 A systematic search for superintegrable systems in two-dimensional Euclidean space E2

was started some time ago.5,6 In 1935 Drach7 published two articles on two-dimensional Hamil-
tonian systems with third order integrals of motion and found ten such integrable classical poten-
tials in complex Euclidean space E2�C�. A systematic study of superintegrable classical and quan-
tum systems with a third order integral is more recent.8,9 All classical and quantum potentials with
a second and a third order integral of motion that separate in Cartesian coordinates in the two-
dimensional Euclidean space were found in Ref. 9. There are 21 quantum potentials and 8 clas-
sical potentials.
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The classical potentials were studied earlier.10 In all eight cases of superintegrable systems,
separating in Cartesian coordinates and allowing a third order integral of motion, the integrals of
motion generate a cubic Poisson algebra. In many cases this polynomial algebra is reducible,
which is a consequence of the existence of a simpler algebraic structure. We have also studied
trajectories and have shown that bounded trajectories are always closed for these superintegrable
potentials.

The quantum case is much richer: 21 superintegrable cases of the considered type exist, 13 of
them irreducible. In this context we call a potential or a Hamiltonian “reducible” if the third order
integral is the commutator �or Poisson commutator� of two second order integrals. The potentials
are expressed in terms of rational functions in six cases, elliptic functions in two cases, and
Painlevé transcendents11 PI, PII, and PIV in five cases.

The three reducible cases are

V =
�2

2
�x2 + y2�, V =

�2

2
�x2 + y2� +

b

x2 +
c

y2 , V =
�2

2
�4x2 + y2� +

b

y2 + cx .

The irreducible potentials with rational function are as follows:

• Potential 1:

V = �2� x2 + y2

8a4 +
1

�x − a�2 +
1

�x + a�2� .

• Potential 2:

V =
�2

2
�9x2 + y2� .

• Potential 3:

V =
�2

2
�9x2 + y2� +

�2

y2 .

• Potential 4:

V = �2�9x2 + y2

8a4 +
1

�y − a�2 +
1

�y + a�2� .

• Potential 5:

V = �2	 1

8a4��x2 + y2� +
1

y2 +
1

�x + a�2 +
1

�x − a�2�
 .

• Potential 6:

V = �2� 1

8a4 �x2 + y2� +
1

�y + a�2 +
1

�y − a�2 +
1

�x + a�2 +
1

�x − a�2� .

It is well known that in quantum mechanics the operators commuting with the Hamiltonian
form an o�4� algebra for the hydrogen atom3,4 and a u�3� algebra for the harmonic oscillator. We
can obtain from the algebra the energy spectrum. In many cases the algebra is no longer a Lie
algebra and many examples of polynomial algebras were obtained in quantum mechanics.12–22

Daskaloyannis17 studied the case of the quadratic Poisson algebras of two-dimensional classical
superintegrable systems and quadratic �associative� algebras of quantum superintegrable systems.
He showed how the quadratic algebras provide a method to obtain the energy spectrum. He used
realizations in terms of deformed oscillator algebras.18 Potentials with a third order integral can be
investigated using these techniques.

012101-2 Ian Marquette J. Math. Phys. 50, 012101 �2009�
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Supersymmetry �SUSY� was originally introduced in the context of grand unification theory
in elementary particle physics in terms of quantum field theory involving a symmetry between
bosons and fermions.23 So far there is no experimental evidence of SUSY particles. At our ener-
gies we can distinguish bosons and fermions, and this symmetry should appear as a broken
symmetry. Supersymmetric quantum mechanics �SUSYQM� was introduced by Witten24 as a toy
model to study SUSY breaking. This method is related to earlier investigation of spectral proper-
ties of Sturm–Liouville differential operators by Darboux25 and Moutard26 in the 19th century.
SUSYQM is also related to the factorization method that was used by Schrodinger27 in the context
of the quantum harmonic oscillator. The factorization method was investigated more systemati-
cally later by Infeld and Hull.28 SUSYQM is now an independent field with applications to atomic,
nuclear, condensed matter, statistical physics, and quantum mechanics.29 The relation with exactly
solvable potentials has been discussed30,31 and also with superintegrable potentials and quadratic
algebras.32

This paper is organized in the following way. In Sec. II we give the general form of the cubic
algebra for two-dimensional systems with a quadratic and a cubic operator that commute with the
Hamiltonian. We give a realization of the cubic algebra in terms of parafermionic oscillator
algebras. We study the finite-dimensional representations of the cubic algebra. In Sec. III we apply
this method to the case of irreducible potentials separable in Cartesian coordinates in E2 with a
third order integral. In Sec. IV we investigate the irreducible potentials from the point of view of
SUSYQM. In Sec. V we give the generating spectrum algebra of the irreducible potential 1. In
Sec. VI we investigate the complexification of the irreducible potential 1. �All other cases can be
obtained from potential 1.�

II. CUBIC AND PARAFERMIONIC ALGEBRAS

We consider a quantum superintegrable system with a quadratic Hamiltonian and one second
order and one third order integrals of motion,

H = a�q1,q2�P1
2 + 2b�q1,q2�P1P2 + c�q1,q2�P2

2 + V�q1,q2� ,

A = d�q1,q2�P1
2 + 2e�q1,q2�P1P2 + f�q1,q2�P2

2 + g�q1,q2�P1 + h�q1,q2�P2 + Q�q1,q2� ,

B = u�q1,q2�P1
3 + 3v�q1,q2�P1

2P2 + 3w�q1,q2�P1P2
2 + x�q1,q2�P2

3 + j�q1,q2�P1
2 + 2k�q1,q2�P1P2

+ l�q1,q2�P2
2 + m�q1,q2�P1 + n�q1,q2�P2 + S�q1,q2� , �2.1�

with

P1 = − i��1, P2 = − i��2, �2.2�

�H,A� = �H,B� = 0. �2.3�

We assume that our integrals close in a cubic algebra. This is the quantum version of the cubic
Poisson algebra obtained earlier10 and the cubic generalization of the quadratic algebra studied by
Daskaloyannis.17 The most general form of such an algebra is

�A,B� = C ,

�A,C� = �A2 + ��A,B� + �A + �B + � ,

�B,C� = �A3 + 	A2 + 
B2 + ��A,B� + �A + 
B + � , �2.4�

where �,� denotes an anticommutator. The coefficients �, �, and � are constants, but the other ones
can be polynomials in the Hamiltonian H. The degrees of these polynomials are dictated by the

012101-3 Superintegrability with third order integrals J. Math. Phys. 50, 012101 �2009�
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fact that H and A are second order polynomials in the momenta and B is a third order one. Hence
C can be a fourth order polynomial. The Jacobi identity �A , �B ,C��= �B , �A ,C�� implies 
=−�,
�=−�, and 
=−�. We obtain

�A,B� = C , �2.5a�

�A,C� = �A2 + ��A,B� + �A + �B + � , �2.5b�

�B,C� = �A3 + 	A2 − �B2 − ��A,B� + �A − �B + � . �2.5c�

For the polynomials on the left and right sides of Eqs. �2.4� and �2.5� to have the same degree,
we must have

� = �0, � = �0, � = �0,

� = �0 + �1H, � = �0 + �1H, � = �0 + �1H + �2H2,

	 = 	0 + 	1H, � = �0 + �1H + �2H2,

� = �0 + �1H + �2H2 + �3H3, �2.6�

where �0 , . . . ,�3 are constants. The Casimir operator of a polynomial algebra is an operator that
commutes with all elements of the algebra:

�K,A� = �K,B� = �K,C� = 0, �2.7�

and this implies

K = C2 − ��A2,B� − ��A,B2� + ��� − ���A,B� + ��2 − ��B2�+ �� − 2��B +
�

2
A4 +

2

3
�	 + ���A3

+ 	−
1

6
��2 +

�	

3
+

��

2
+ �2 + �
A2 + 	−

1

6
��� +

�	

3
+ �� + 2�
A . �2.8�

Ultimately, the Casimir operator will be a function of the Hamiltonian alone. We construct a
realization of the cubic algebra in terms of a deformed oscillator algebra17,18 �bt ,b ,N� which
satisfies the relation

�N,bt� = bt, �N,b� = − b, btb = ��N�, bbt = ��N + 1� . �2.9�

��N� is called the “structure function.” Following Daskaloyannis17 we request ��N� to be a real
function and impose ��0�=0 and ��N��0 for N�0. We construct a Fock-type representation for
the deformed oscillator algebra with a Fock basis �n�, n=0,1 ,2 , . . ., satisfying

N�n� = n�n�, bt�n� = 
��N + 1��n + 1� , �2.10�

b�0� = 0, b�n� = 
��N��n − 1� . �2.11�

To obtain a finite-dimensional representation we request ��p+1�=0.
Let us show that there exists a realization of the form

A = A�N�, B = b�N� + bt
�N� + 
�N�b . �2.12�

The functions A�N�, b�N�, and 
�N� will be determined by the cubic algebra. We have by Eq.
�2.5a�

012101-4 Ian Marquette J. Math. Phys. 50, 012101 �2009�
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C = �A,B� = bt�A�N�
�N� − 
�N��A�N�b , �2.13�

where �A�N� is defined to be �A�N�=A�N+1�−A�N�. When we insert Eq. �2.12� into Eq. �2.5b�
we obtain two equations that allow us to determine A�N� and b�N�,

�A�N�2 = ��A�N + 1� + A�N�� + � ,

�A�N�2 + 2�A�N�b�N� + �A�N� + �b�N� + � = 0. �2.14�

Two distinct possibilities occur.
Case 1: ��0. We find the following solution:

A�N� =
�

2
	�N + u�2 −

1

4
−

�

�2
 ,

b�N� =
�

4
	�N + u�2 −

1

4

 +

�� − ��

2�2 −
��2 − 2��� + 4�2�

4�4

1

�N + u�2 − 1
4

. �2.15�

The constant u will be determined below using the fact that we require that the deformed oscillator
algebras should be nilpotent. Equation �2.5c� gives us

2��N + 1�	�A�N� +
�

2


�N� − 2��N�	�A�N − 1� −

�

2


�N − 1�

= �A�N�3 + 	A�N�2 − �b�N�2 − 2�A�N�b�N� + �A�N� − �b�N� + � , �2.16�

and the Casimir operator is now realized as

K = ��N + 1���2 − � − 2�A�N� − �A�N�2�
�N� + ��N���2 − � − 2�A�N� − �A�N − 1�2�
�N − 1�

− 2�A�N�2b�N� + ��2 − � − 2�A�N��b�N�2 + 2��� − ��A�N�b�N� + ��� − 2��b�N� +
�

2
A�N�4

+
2

3
�	 + ���A�N�3 + 	−

1

6
��2 +

�	

3
+

��

2
+ �2 + �
A�N�2 + 	−

1

6
��� +

�a

3
+ �� + 2�
A�N� .

�2.17�

Finally the structure function is

��N� =
1


�N − 1�	�A�N − 1� −
�

2

�f� + 	�A�N� +

�

2

�g�

�	�A�N� +
�

2

	K + 2�A�N�2b�N�

− ��2 − � − 2�A�N��b�N�2 − 2��� − ��A�N�b�N� − ��� − 2��b�N� −
�

2
A�N�4

−
2

3
�	 + ���A�N�3 − 	−

1

6
��2 +

�	

3
+ �2 + �
A�N�2 − 	−

1

6
��� +

�	

3
+ �� + 2�
A�N�


−
1

2
��2 − � − 2�A�N� − �A�N�2���A�N�3 + 	A�N�2 − �b�N�2 − 2�A�N�b�N� + �A�N�

− �b�N� + ��� , �2.18�

with
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f = �2 − � − 2�A�N� − �A�N�2, g = �2 − � − 2�A�N� − �A�N − 1�2. �2.19�

Thus the structure function depends only on the function 
. This function can be arbitrarily chosen
and does not influence the spectrum. We choose 
 to obtain a structure function that is a polyno-
mial in N, namely, we set


�N� =
1

3 � 212�8�N + u��1 + N + u��1 + 2�N + u��2 . �2.20�

From our expressions for A�N�, b�N�, and 
�N�, the third relation of the cubic associative algebra,
and the expression of the Casimir operator we find the structure function ��N�. For Case 1 the
structure function is a polynomial of order of 10 in N. The coefficients of this polynomial are
functions of �, �, �, �, �, �, 	, �, and �. We give the formula in the Appendix.

Case 2: For �=0 and ��0 we get the solution

A�N� = 
��N + u�, b�N� = − ��N + u�2 −
�


�
�N + u� −

�

�
. �2.21�

We choose a trivial expression 
�N�=1. The explicit expression of the structure function for this
case is

��N� = 	 K

− 4�
−

��

4�3/2 −
�

4
�
+

�2

4�2
 + 	− ��

2�
−

�

4
−

�2

4�
+

��

2�3/2 +
��

4
�
+

�

2
�
+

	
�

12

�N + u�

+ 	− 	
�

4
−

3��

4
�
+

�2

4�
+

��

2�
+

�2

4
+

�

4
+

��

8

�N + u�2

+ 	− �2

2
+

��

2�1/2 +
	
�

6
−

��

4

�N + u�3 + 	�2

4
+

��

8

�N + u�4. �2.22�

We use a parafermionic realization in which the parafermionic number operator N and the
Casimir operator K are diagonal. The basis of this representation is the Fock basis for the para-
fermionic oscillator. The vector �k ,n�, n=0,1 ,2 , . . ., satisfies the following relations:

N�k,n� = n�k,n�, K�k,n� = k�k,n� . �2.23�

The vectors �k ,n� are also eigenvectors of the generator A.

A�k,n� = A�k,n��k,n� ,

A�k,n� =
�

2
	�n + u�2 −

1

4
−

�

�2
, � � 0,

A�k,n� = 
��n + u�, � = 0, � � 0. �2.24�

We have the following constraints for the structure function:

��0,u,k� = 0, ��p + 1,u,k� = 0. �2.25�

With these two relations we can find the energy spectrum. Many solutions for the system exist.
Unitary representations of the deformed parafermionic oscillator obey the constraint ��x��0 for
x=1,2 , . . . , p. There are other conditions that should be imposed. The representations should be
constrained by the differential character of the Hamiltonian and the integrals. For example, the
mean energy should be greater than the minimum of the potential,
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�H� � min V . �2.26�

This restriction and possibly other ones coming from the differential operator character of the
integrals should be taken into consideration to exclude spurious states.

III. IRREDUCIBLE RATIONAL FUNCTION POTENTIALS

In the case of the three reducible superintegrable potentials the cubic algebra is a direct
consequence of a simpler algebraic structure. The first potential V= ��2 /2��x2+y2� is the well
known isotropic harmonic oscillator. We can construct the quadratic or the cubic algebra from the
Lie algebra as in the classical case.10 The eigenfunctions of the harmonic oscillator are well known
and are given in terms of the Hermite polynomials. The two other reducible potentials V
= ��2 /2��x2+y2�+b /x2+c /y2 and V= ��2 /2��4x2+y2�+b /y2+cx are two of the four types of po-
tentials found a long time ago.6 There is no Lie algebra in these cases but a quadratic algebra,17

and we can obtain the cubic algebra directly from this algebra. We obtain from the cubic algebra
the same unitary representations that were obtained from the quadratic algebra.17

In this section we will apply to the irreducible quantum potentials the results of Sec. II and
give all unitary representations and the corresponding energy spectra. Notice that in all cases we
have �=0, so only Case 2 of Sec. II occurs.

Potential 1:

V = �2	 x2 + y2

8a4 +
1

�x − a�2 +
1

�x + a�2
 .

This potential has the following two integrals:

A = Px
2 − Py

2 + 2�2	 x2 − y2

8a4 +
1

�x − a�2 +
1

�x + a�2
 , �3.1�

B =
1

2
�L,Px

2� +
1

2
�2�y	4a2 − x2

4a4 −
6�x2 + a2�

��x2 − a2�2�
,Px�
+

1

2
�2�x	 �x2 − 4a2�

4a4 −
2

x2 − a2 +
4�x2 + a2�
�x2 − a2�2 
,Py� . �3.2�

The integrals A, B, and H give rise to the following cubic algebra and Casimir operators:

�A,B� = C, �A,C� =
4h4

a4 B ,

�B,C� = − 2�2A3 − 6�2A2H + 8�2H3 + 6
�4

a2 A2 + 8
�4

a2 HA − 8
�4

a2 H2 + 2
�6

a4 A − 2
�6

a4 H − 6
�8

a6 ,

�3.3�

K = − 16�2H4 + 32
�4

a2 H3 + 16
�6

a4 H2 − 40
�8

a6 H − 3
�10

a8 . �3.4�

The structure function is given by the expression

��x� = 	− �8

a4 
	x + u − 	− a2E

�2 −
1

2


	x + u − 	a2E

�2 +
1

2


	x + u − 	− a2E

�2 +
3

2




�	x + u − 	− a2E

�2 +
5

2


 . �3.5�
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There are three unitary representations. The first unitary solution is for a= ia0, a0�R. From
the condition ��0,u ,k�=0 we find u=−a0

2E /�2+1 /2. The second constraint ��p+1,u ,k�=0 im-
plies

E =
�2�p + 2�

2a0
2 , ��x� = 	�8

a0
4
x�p + 1 − x��p + 3 − x��p + 4 − x� , �3.6�

where p�N. We have ��p+1�=0 which means that the unitary representations have dimension
p+1. This is also the degeneracy of the energy levels. The second unitary solution is for a= ia0,
a0�R. We have u= �a0

2E /�2�−1 /2 and

E = −
�2�p�
2a0

2 , ��x� = 	�8

a0
4
x�p + 1 − x��3 − x��2 − x� , �3.7�

valid only for p=1,2. We have

E � min V = V�0,0� =
− 2�2

a0
2 , �3.8�

so this is a physically meaningful solution. A third unitary solution exists this time for a�R. We
have u= �−a2E /�2�+5 /2 and

E =
�2�p + 3�

2a2 , ��x� = 	�8

a4
x�p + 1 − x��x + 1��x + 3� . �3.9�

Potential 2:

V =
�2

2
�9x2 + y2� .

This potential has the two integrals

A = Px
2 − Py

2 + �2�9x2 − y2� ,

B =
1

2
�L,Py

2� +
�2

6
�y3,Px� −

3�2

2
�xy2,Py� . �3.10�

The cubic algebra and Casimir operator of this system are

�A,B� = C, �A,C� = 144�2�2B ,

�B,C� = − 2�2A3 + 6�2HA2 − 8�2H3 − 56�2�4A + 72�2�4H , �3.11�

K = − 16�2H4 + 64�2�4H2 + 720�4�6. �3.12�

The structure function is

��x� = �− 36�2h4�	x + u − 	 − E

6��
+

1

2


	x + u − 	 E

6��
+

1

6


	x + u − 	 E

6��
+

1

2




�	x + u − 	 E

6��
+

5

6


 . �3.13�

We use the two constraints given by Eq. �2.25�. We obtain u= �−E /6���+1 /2 and three
unitary representations with the corresponding energy spectra:
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E = 3���p + 2
3�, ��x� = �36�2h4�x�p + 1 − x��p + 2

3 − x��p + 1
3 − x� , �3.14�

E = 3���p + 1�, ��x� = �36�2h4�x�p + 1 − x��p + 2
3 − x��p + 4

3 − x� , �3.15�

E = 3���p + 4
3�, ��x� = �36�2h4�x�p + 1 − x��p + 5

3 − x��p + 4
3 − x� . �3.16�

These results coincide with those obtained by solving the Schrödinger equation using separa-
tion of variable. The eigenfunctions are well known and given by

�k1
�x� =

1

2k1k1!

	 3�

��

1/4

e�−3�/2��x2
Hk1

	
3�

�
x
 , �3.17�

�k2
�y� =

1

2k2k2!

	 �

��

1/4

e�−�/2��y2
Hk2

	
�

�
y
 , �3.18�

where Hk are Hermite polynomials. The corresponding energy spectrum is

E = ���3k1 + k2 + 2� . �3.19�

Potential 3:

V =
�2

2
�9x2 + y2� +

�2

y2 .

The two integrals of this potential are

A = Px
2 − Py

2 + �2�9x2 − y2� −
2�2

y2 ,

B =
1

2
�L,Py

2� +
1

2
��2y3

3
−

�2

y
,Px� +

1

2
�3x�− �2y2� +

�2

y2 ,Py� . �3.20�

The cubic algebra and the Casimir operator are

�A,B� = C �A,C� = 144�2�2B ,

�B,C� = − 2�2A3 + 6�2HA2 − 8�2H3 − 8�2�4A + 72�2�4H , �3.21�

K = − 16�2H4 + 256�2�4H2 − 1008�4�6. �3.22�

The structure function is

��x� = �− 36�2h4�	x + u − 	 − E

6��
+

1

2


	x + u − 	 E

6��
−

1

6


	x + u − 	 E

6��
+

1

2




�	x + u − 	 E

6��
+

7

6


 . �3.23�

Using Eq. �2.25� we obtain u= �−E /6���+1 /2 and two unitary representations:

��x� = �36�2�4�x�p + 5
3 − x��p + 1 − x��p + 7

3 − x�, E = 3���p + 5
3� , �3.24�

��x� = �36�2�4�x�p + 1
3 − x��p + 5

3 − x��p + 1 − x�, E = 3���p + 1� . �3.25�
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These results are corroborated by those obtained when we use separation of variable and solve
the Schrödinger equation. The eigenfunctions are well known and are given by

�k1
�x� =

1

2k1k1!

	 3�

��

1/4

e�−3�/2��x2
Hk1

	
3�

�
x
 , �3.26�

�k2
�y� = 	�

�

� k2 ! 		�

�

3/2


�	k2 +
5

2

 �

1/2

e−��/2��y2
y2Lk2

3/2	�

�
y2
 . �3.27�

where Ln
� is a Laguerre polynomial. The corresponding energy spectrum is

E = ���3k1 + 2k2 + 4� . �3.28�

Potential 4:

V = �2	9x2 + y2

8a4 +
1

�y − a�2 +
1

�y + a�2
 .

The two integrals are given by the formulas

A = Px
2 − Py

2 + 2�2	9x2 − y2

8a4 +
1

�y − a�2 +
1

�y + a�2
 , �3.29�

B =
1

2
�L,Py

2� +
1

2
�2�y	 y2

12a4 −
8a2

�y2 − a2�2 −
2

y2 − a2
,Py� +
1

2
�2�x	8�y2 + a2�

�y2 − a2�2 −
y2

a4
,Py� .

�3.30�

The cubic algebra and the Casimir operator are

�A,B� = C, �A,C� =
36h4

a4 B ,

�B,C� = − 2�2A3 − 6�2A2H − 8�2H3 + 10
�6

a4 A + 18
�6

a4 H − 24
�8

a6 , �3.31�

K = − 16�2H4 + 112
�6

a4 H2 + 96
�8

a6 H − 171
�10

a8 . �3.32�

The structure function is

��x� =
− 9�6

a4 	x + u − 	a2E

3�2 −
1

2


	x + u − 	− a2E

3�2 +
1

2


	x + u − 	a2E

3�2 +
5

6




�	x + u − 	a2E

3�2 +
7

6


 . �3.33�

For the case a= ia0, a0�R, we get the three following unitary representations:

��x� =
9�6

a0
4 x�p + 1 − x�	x −

4

3

	x −

5

3

, E =

3�2�p�
2a0

2 , �3.34�
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��x� =
36�6

a0
4 x�p + 1 − x�	x +

4

3

	x −

1

3

, E =

3�2�p + 4
3�

2a0
2 , �3.35�

��x� =
36�6

a0
4 x�p + 1 − x�	x +

2

3

	x +

1

3

, E =

3�2�p + 5
3�

2a0
2 . �3.36�

For the case a�R we get the three unitary representations:

��x� =
9�6

a4 x�p + 1 − x�	p +
7

3
− x
	p +

8

3
− x
, E =

3�2�p + 2�
2a2 , �3.37�

��x� =
9�6

a4 x�p + 1 − x�	p +
4

3
− x
	p −

1

3
− x
, E =

3�2�p + 2
3�

2a2 , �3.38�

��x� =
9�6

a4 x�p + 1 − x�	p +
2

3
− x
	p −

2

3
− x
, E =

3�2�p + 1
3�

2a2 . �3.39�

Potential 5:

V = �2	 1

8a4��x2 + y2� +
1

y2 +
1

�x + a�2 +
1

�x − a�2�
 ,

and
potential 6:

V = �2� 1

8a4 �x2 + y2� +
1

�y + a�2 +
1

�y − a�2 +
1

�x + a�2 +
1

�x − a�2� ,

are particular. Their integrals of motion A, B, and C do not close in a finite cubic algebra. Closure
at a higher order remains to be investigated. In these cases, we have the separation of variables and
the unidimensional parts are related to potentials 1 and 4 and their spectra. We will see also in Sec.
IV that we can obtain information using SUSYQM.

IV. SUPERSYMMETRIC QUANTUM MECHANICS

In this section we will investigate a relation between SUSYQM �Ref. 24� and superintegrable
systems with a third order integral of motion. Let us recall some aspects of SUSYQM. We define
two first order operators,

A =
�


2

d

dx
+ W�x�, A† = −

�


2

d

dx
+ W�x� . �4.1�

We consider the following two Hamiltonians which are called “superpartners:”

H1 = A†A = −
�2

2

d2

dx2 + W2 −
�


2
W�, H2 = AA† = −

�2

2

d2

dx2 + W2 +
�


2
W�. �4.2�

There are two cases. The first is A�0
�1��0, E0

�1��0, A†�0
�2��0, and E0

�2��0. We have

En
�2� = En

�1� � 0, �n
�2� =

1


En
�1�A�n

�1�, �n
�1� =

1


En
�2�A

†�n
�2�. �4.3�

and the two Hamiltonians are isospectral. This case corresponds to broken SUSY.
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For the second case the SUSY is unbroken and we have A�0
�1�=0, E0

�1�=0, A†�0
�2��0, and

E0
�2��0. Without loss of generality we take H1 as the potential having the zero energy ground

state. We have

En
�2� = En+1

�1� , E0
�1� = 0, �n

�2� =
1


En+1
�1� A�n+1

�1� , �n+1
�1� =

1


En
�2�A

†�n
�2�. �4.4�

We can define the matrices

H = 	H1 0

0 H2

, Q = 	0 0

A 0

, Qt = 	0 A†

0 0

 . �4.5�

We get the relations

�H,Q� = �H,Qt� = 0, �Q,Q� = �Q†,Q†� = 0, �Q,Q†� = H . �4.6�

We have an sl�1 �1� superalgebra and H1 and H2 are superpartners. By construction, all our
potentials can be viewed as the sum of two one-dimensional potentials, H=Hx+Hy. The unidi-
mensional parts of the three reducible potentials and the irreducible potentials 2 and 3 are known
in SUSYQM. These potentials have the shape invariance property.29,31 We will show that poten-
tials 1 and 4–6 can be also discussed from the point of view of SUSY.

A. Potential 1

The Hamiltonian is

H = Hx + Hy =
Px

2

2
+

Py
2

2
+ �2	 x2 + y2

8a4 +
1

�x − a�2 +
1

�x + a�2
 . �4.7�

Let us define the two operators,

b† =
1

2

	− �
d

dx
−

�

2a2x − �	 − 1

x − a
+

− 1

x + a


 , �4.8�

b =
1

2

	�
d

dx
−

�

2a2x − �	 − 1

x − a
+

− 1

x + a


 . �4.9�

For a= ia0, a0�R, we have

H1 = b†b =
Px

2

2
+

�2x2

8a0
4 +

�2

�x − ia0�2 +
�2

�x + ia0�2 +
3�2

4a0
2 , �4.10�

H2 = bb† =
Px

2

2
+

�2x2

8a0
4 +

5�2

4a0
2 . �4.11�

These two unidimensional Hamiltonians are almost isospectral. H1 has a zero energy ground
state. The SUSY is unbroken. This potential was discussed in Ref. 33. Nonsingular superpartners
of the harmonic oscillator were discussed in Refs. 34 and 35. Coherent states of superpartners of
the harmonic oscillator have also been studied.36 Wee see that H1=Hx+3�2 /4a0

2 is the Hamil-
tonian that we are interested in and its superpartner H2 corresponds to a harmonic oscillator.

We apply results for the unbroken SUSY. The zero energy ground state satisfies b�0=0 and is

�0�x� = a0
3/2	 2

�

1/4e−x2/4a0

2

a0
2 + x2 . �4.12�
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The other eigenfunctions of H1 are obtained by the equation �n+1
�1� = �1 /
En

�2��b†�n
�2�. In this

case �n
�2� are only the eigenfunctions of the harmonic oscillator �H2� that are written in terms of

Hermite polynomials. We get directly for H1

�k1+1�x� = b†	 1

2k1k1!

	 1

2a0
2�

1/4

e�−1/4a0
2�x2

Hk1
	
 1

2a0
2x



=
a0


�k1 + 3�
	 1

2a0
2�

1/4 1


2k1k1!
e−x2/4a0

2	 �x3 + 3xa0
2�

a0
2�x2 + a0

2�
Hk1

−
2k1


2a0

�Hk1−1
 , �4.13�

�=1 for k1�1 and �=0 for k1=0. With this expression we get for k1=0

�1 =
1


3�2��1/4a0
3/2e−x2/4a0

2 x�3a0
2 + x2�

a0
2 + x2 . �4.14�

We have the following energy spectrum for H1:

E0
�1� = 0, Ek1+1

�1� =
�2

2a0
2 �k1 + 3� . �4.15�

We thus obtain the spectrum of Hx �the x part of the irreducible potential 1�:

E0
x = −

3�2

4a0
2 , Ek1+1

x =
�2

2a0
2	k1 +

3

2

 . �4.16�

If we add Hy to these results we get the energy spectrum and the eigenfunctions of potential
1. There are two families of solutions. The first corresponds to the energies

E =
�k1 + k2 + 2��2

2a0
2 =

�p + 2��2

2a0
2 , �4.17�

with eigenfunctions

�k1+1�x� =
a0


�k1 + 3�
	 1

2a0
2�

1/4 1


2k1k1!
e−x2/4a0

2	 �x3 + 3xa0
2�

a0
2�x2 + a0

2�
Hk1

−
2k1


2a0

�Hk1−1
 , �4.18�

�k2
�y� =

1

2k2k2!

	 1

2a0
2�

1/4

e�−1/4a0
2�y2

Hk2
	
 1

2a0
2 y
 �4.19�

and is also obtained from the cubic algebra. The second corresponds to the energies

E =
�2�k2 − 1�

2a0
2 , �4.20�

with the corresponding eigenfunctions

��x,y� = �0�x��k2
�y�, �0�x� = a0

3/2	 2

�

1/4e−x2/4a0

2

a0
2 + x2 , �4.21�

and �k2
�y� as in Eq. �4.19�.

The two states obtained from Eq. �3.8� are given by Eq. �4.20� for k2=0 ,1. For k3�3 there are
common eigenvalues given by Eqs. �4.17� and �4.20� and therefore the degeneracy is p+2.

Let us consider the case a�R. We have the following Hamiltonians:
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H1 = btb =
Px

2

2
+

�2x2

8a4 +
�2

�x − a�2 +
�2

�x + a�2 −
3�2

4a2 , �4.22�

H2 = bbt =
Px

2

2
+

�2x2

8a4 −
5�2

4a2 . �4.23�

This case is more complicated because of the singularities on the x axis for the Hamiltonian
H1. We have a regular Hamiltonian connected to a singular one and we have also for H2 negative
energy states. Such situations have attracted a lot of attention and many articles were devoted to
such singular potentials. An important case is the one of Jevicki and Rodrigues.37,38 The corre-
sponding Hamiltonians are

H− =
d2

dx2 + x2 − 3, H+ = −
d2

dx2 + x2 +
2

x2 − 1. �4.24�

Factorization of Hamiltonians H1 and H2 given by Eqs. �4.22� and �4.23� gives us an algebraic
relation that does not take into account the presence of singularities or boundary conditions. The
wave functions given in Eqs. �4.3� and �4.4� do not necessarily belong to the Hilbert space of
square integrable functions. The potential in Eq. �4.22� has impenetrable barriers coming from the
singularities. We can consider the superpartner to be the harmonic oscillator with two infinite
barriers �at x= �a� to recover the SUSY.39 In Ref. 39 a superpartner of the harmonic oscillator
with one singularity was considered but the method can be extended to more singularities. The
only case that was solved analytically and where the energy levels are equidistant is when the
singularity was at the origin. In our case we were not able to solve analytically and we leave for
future investigations these numerical calculations that appear interesting from a phenomenological
point of view. Singular potentials were also investigated by Das and Pernice40 by means of the
regularization method. Znojil41 discussed another method that consist in the complexification of
the potential. In Sec. VI we will discuss the complexification of the irreducible quantum superin-
tegrable potential 1.

B. Potential 4

We apply these results to the next irreducible potential,

V = �2	9x2 + y2

8a4 +
1

�y − a�2 +
1

�y + a�2
 . �4.25�

We can also use SUSYQM because the y part is the same as the x part of potential 1. For the case
a= ia0, a0�R, we find with energy

E =
�2

2a0
2 �3k1 + k2 + 3� , �4.26�

with the corresponding eigenfunctions

�k1
�x� =

1

2k1k1!

	 3

2a0
2�

1/4

e−�3/4a0
2�x2

Hk1
	
 3

2a0
2x
 , �4.27�

�k2+1�y� =
a0


�k2 + 3�
	 1

2a0
2�

1/4 1


2k2k2!
e−y2/4a0

2	 �y3 + 3ya0
2�

a0
2�y2 + a0

2�
Hk2

−
2k2


2a0

�Hk2−1
 , �4.28�

and we get from the singlet state the energies
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E =
�2

2a0
2 �3k1� �4.29�

and eigenfunctions

��x,y� = �0�y��k1
�x�, �0�y� = a0

3/2	 2

�

1/4e−y2/4a0

2

a0
2 + y2 �4.30�

and �k1
�x� as in Eq. �4.27�.

C. Potential 5

The potential is

V = �2� 1

8a4��x2 + y2� +
1

y2 +
1

�x + a�2 +
1

�x − a�2�� . �4.31�

For the case a= ia0, a0�R, we have

E =
�k1 + 2k2 + 5�

2a0
2 �2, �4.32�

with the eigenfunctions given by

�k1
�x� =

a0


�k1 + 3�
	 1

2a0
2�

1/4 1


2k1k1!
e−x2/4a0

2	 �x3 + 3xa0
2�

a0
2�x2 + a0

2�
Hk1

−
2k1


2a0

�Hk1−1
 , �4.33�

�k2
�y� = 	 1

2a0
2
1/4� k2 ! 	 1

2a0
2
3/2

�	k2 +
5

2

 �

1/2

e−y2/4a0
2
y2Lk2

3/2	 y2

2a0
2
 , �4.34�

where Lk
	�z� are Laguerre polynomials. We have also the energies

E =
�2�2k2 + 2�

2a0
2 , �4.35�

with the corresponding eigenfunctions

��x,y� = �k2
�y��0�x�, �0�x� = a0

3/2	 2

�

1/4e−x2/4a0

2

a0
2 + x2 �4.36�

and �k2
�y� as in Eq. �4.34�.

D. Potential 6

We consider the potential

V = �2� 1

8a4 �x2 + y2� +
1

�y + a�2 +
1

�y − a�2 +
1

�x + a�2 +
1

�x − a�2� . �4.37�

For the case a= ia0, a0�R, we have the energies
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E =
�k1 + k2 + 3�

2a0
2 �2, �4.38�

with the eigenfunctions given by

�k1+1�x� =
a0


�k1 + 3�
	 1

2a0
2�

1/4 1


2k1k1!
e−x2/4a0

2	 �x3 + 3xa0
2�

a0
2�x2 + a0

2�
Hk1

−
2k1


2a0

�Hk1−1
 , �4.39�

�k2+1�y� =
a0


�k2 + 3�
	 1

2a0
2�

1/4 1


2k2k2!
e−y2/4a0

2	 �y3 + 3ya0
2�

a0
2�y2 + a0

2�
Hk2

−
2k2


2a0

�Hk2−1
 . �4.40�

The singlet state in the x part of the Hamiltonian gives the energies

E =
�2�k2�

2a0
2 , �4.41�

with eigenfunctions

��x,y� = �k2
�y��0�x�, �0�x� = a0

3/2	 2

�

1/4e−x2/4a0

2

a0
2 + x2 �4.42�

and �k2
�y� as in Eq. �4.40�.

We also obtain another kind of solution from the singlet state in the y part. The energies are

E =
�2�k1�

2a0
2 , �4.43�

with the corresponding eigenfunctions

��x,y� = �k1
�x��0�y�, �0�y� = a0

3/2	 2

�

1/4e−y2/4a0

2

a0
2 + y2 �4.44�

and �k1
�x� as in Eq. �4.39� and a state coming from the singlet state in the two parts with energies

E = −
3�2

2a0
2 , �4.45�

with the following expression for the eigenfunctions:

�0�x� = a0
3/2	 2

�

1/4e−x2/4a0

2

a0
2 + x2 , �0�y� = a0

3/2	 2

�

1/4e−y2/4a0

2

a0
2 + y2 . �4.46�

V. GENERATING SPECTRUM ALGEBRA

The SUSY allows us to find the creation and annihilation operators of the x part of the
irreducible potential 1. They are given by

M = b†cb, M† = b†c†b , �5.1�

where c and c† are annihilation and creation operators of the superpartner H2, that is, a harmonic
oscillator. We have
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c =
�

2a2	x + 2a2 d

dx

, c† =

�

2a2	x − 2a2 d

dx

 �5.2�

and

M =
1

2

	− �
d

dx
−

�

2a2x + �	 1

x − a
+

1

x + a


 �

2a2	x + 2a2 d

dx

 1

2

�	�
d

dx
−

�

2a2x + �	 1

x − a
+

1

x + a


 , �5.3�

M† =
1

2

	− �
d

dx
−

�

2a2x + �	 1

x − a
+

1

x + a


 �

2a2	x − 2a2 d

dx

 1

2

�	�
d

dx
−

�

2a2x + �	 1

x − a
+

1

x + a


 . �5.4�

The zero energy ground state given by Eq. �4.12� is annihilated not only by the annihilation
operator but also by the creation operator,

M�0�x� = M†�0 = 0. �5.5�

The creation and annihilation operators for the y part �Hy� of potential 1 are

L =
�

2a2	y + 2a2 d

dy

, L† =

�

2a2	y − 2a2 d

dy

 . �5.6�

We have the commutators

�M,M†� =
3

4
	H +

1

2
A
2

−
�2

a2	H +
1

2
A
 −

3�4

16a4 , �L,L†� = 1. �5.7�

We consider the following operators:16

E+ = M†L†, E− = ML, F+ = �M†�2, F− = M2, G+ = �L†�2, G− = L2. �5.8�

We add to these operators the Hamiltonian and the integrals of motion A, B, and C �Eqs.
�3.1�–�3.3��. We have the following quintic algebra that contains 45 relations where the cubic
algebra appears as a subalgebra:

�H,A� = 0, �H,B� = 0, �H,C� = 0, �H,E�� = � 	�2

a2
E�,

�H,F�� = � 	�2

a2
F�, �H,G�� = � 	�2

a2
G�,

�A,B� = C, �A,C� =
4h4

a4 B, �A,E�� = 0, �A,F�� = � 	2�2

a2 
F�,

�A,G�� = � 	2�2

a2 
G�, �B,C� = − 2�2A3 − 6�2A2H + 8�2H3 + 6
�4

a2 A2 + 8
�4

a2 HA − 8
�4

a2 H2

+ 2
�6

a4 A − 2
�6

a4 H − 6
�8

a6 ,
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�B,E−� = − 2i�F− +
3i�

2
	H +

1

2
A
2

G− −
2i�3

a2 	H +
1

2
A
G− −

3i�5

8a4 G−,

�B,E+� = − 2i�F+ +
3i�

2
	H +

1

2
A
2

G+ −
2i�3

a2 	H +
1

2
A
G+ −

3i�5

8a4 G+,

�B,F−� = 3i�	H +
1

2
A
2

E− −
7i�3

a2 	H +
1

2
A
E− +

11i�5

4a4 E−,

�B,F+� = 3i�	H +
1

2
A
2

E+ −
i�3

a2 	H +
1

2
A
E+ −

5i�5

4a4 E+,

�B,G+� = − 4i�E+, �B,G−� = − 4i�E−,

�C,E−� =
4i�3

a3 F− +
3i�3

a2 	H +
1

2
A
2

G− −
4i�5

a4 	H +
1

2
A
G− −

3i�7

4a6 G−,

�C,E+� =
− 4i�3

a3 F+ −
3i�3

a2 	H +
1

2
A
2

G+ +
4i�5

a4 	H +
1

2
A
G+ +

3i�7

4a6 G+,

�C,F−� =
6i�3

a2 	H +
1

2
A
2

E− −
14i�5

a4 	H +
1

2
A
E− +

11i�7

2a6 E−,

�C,F+� = −
6i�3

a2 	H +
1

2
A
2

E+ +
2i�5

a4 	H +
1

2
A
E+ +

5i�7

2a6 E+,

�C,G�� = �
8i�3

a2 E�, �E�,F�� = 0, �E�,G�� = 0,

�E−,E+� =
− a2�2

16
A3 +

3a2�2

4
AH2 + a2�2H3 +

�4

8
A2 −

�4

2
AH −

3�4

2
H2 +

�6

16a2A −
�6

4a2H +
3�8

8a4 ,

�E+,F−� =
− 3ia2�

16
C	H +

1

2
A
2

+
3i�3

8
B	H +

1

2
A
2

+
7i�3

16
C	H +

1

2
A
 −

7i�5

8a2 B	H +
1

2



−
11i�5

64a2 C +
11i�7

32a4 B ,

�E−,F+� =
3ia2�

16
C	H +

1

2
A
2

+
3i�3

8
B	H +

1

2
A
2

−
i�3

16
C	H +

1

2
A
 −

i�5

8a2B	H +
1

2

 −

5i�5

64a2C

−
5i�7

32a4B ,

�E−,G+� =
ia2�

4
C −

i�3

2
B, �E+,G−� =

− ia2�

4
C −

i�3

2
B ,
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�F−,F+� =
3a2�2

4
	H +

1

2
A
5

−
5�4

2
	H +

1

2
A
4

+
25�6

8a2 	H +
1

2
A
3

−
5�8

4a4	H +
1

2
A
2

−
53�10

64a6 	H +
1

2
A
 +

15�12

32a8 ,

�F�,G�� = �F�,G�� = 0, �G−,G+� = 4a2�2	H +
1

2
A
 . �5.9�

This polynomial algebra is the spectrum-generating algebra.

VI. COMPLEXIFICATION OF SUPERINTEGRABLE POTENTIALS

In quantum mechanics textbooks the Hermiticity of the Hamiltonian is often presented as a
condition for the energy spectrum to be real. There exist other requirements that can be chosen
without losing essential features of quantum mechanics. One requirement that appears more physi-
cal is the space-time reflection symmetry, i.e., the Hamiltonian is invariant under the PT
transformation,42 i.e., the simultaneous reflections P :x→−x, p→−p and � :x→x, p→−p, i→−i.
For potentials invariant under such transformations the energy spectrum can also consist of
complex-conjugate pairs of eigenvalues. The PT symmetry is thus said to be broken. The notion of
pseudo-Hermiticity was introduced by Mostafazadeh.43 He showed also that every Hamiltonian
with a real spectrum is pseudo-Hermitian and that all PT-symmetric Hamiltonians studied belong
to the class of pseudo-Hermitian Hamiltonian. The replacement of the condition that the Hamil-
tonian is Hermitian by a weaker condition allows us to study many new kinds of Hamiltonians that
would have been excluded and from a phenomenological point of view may describe physics
phenomena. The case H= p2+x2�ix�� was studied in detail by Bender42 in 1998.

Complexification has been proposed as a natural way to regularize singular potentials.41 It
consists in a transformation of the type x→x− i� applied to a potential. The harmonic oscillator
and the Smorodinsky–Winternitz potential are PT-symmetric Hamiltonian after a
complexification.41

We will consider the complexification of the Hamiltonian

H = Hx + Hy =
Px

2

2
+

Py
2

2
+ �2	 �x − i��2 + �y − i��2

8a4 +
1

�x − i� − a�2 +
1

�x − i� + a�2
 . �6.1�

The complex harmonic oscillator Hamiltonian Hy is known to be PT symmetric. Its energy spec-
trum is real, namely,

E =
�2

2a2	m +
1

2

 . �6.2�

The eigenfunctions are

�m�y� = Nme−�y − i��2/4a2
Hm	 �y − i��


2a

 �6.3�

�here and below Nm is a normalization constant�.
To get the energy spectrum and the eigenfunctions of Hx we complexify the operators given

by Eqs. �4.8� and �4.9�. We get two PT-symmetric Hamiltonians. This transformation allows to
regularize Hx when a�R. The �real� energy levels and eigenfunctions of the Hamiltonian H2 are
known,

H1 = b�b =
Px

2

2
+

�2�x − i��2

8a4 +
�2

�x − i� − a�2 +
�2

�x − i� + a�2 −
3�2

4a2 , �6.4�
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H2 = bb� =
Px

2

2
+

�2�x − i��2

8a4 −
5�2

4a2 . �6.5�

The Darboux transformation is still valid for non-Hermitian Hamiltonians but SUSY is re-
placed by pseudo-SUSY.44 We have b��gr=0 that correspond to the zero energy state of H2,

�gr = Ngre
−�x − i��2/4a2

�a2 − �x − i��2� . �6.6�

We can obtain the eigenfunction of H1 by applying b� on the other state of H2 given in terms
of Hermite polynomials. We get

�n = Nne−�x − i��2/4a2	 2�x − i��
�x − i��2 − a2Hn+3	 �x − i��


2a

 −

2�n + 3�

2a

Hn+2	 �x − i��

2a



 . �6.7�

Let us give the explicit expression for the ground state and the first excited state,

�0 = N0e−�x − i��2/4a2 �3a4 + �x − i��4�
�a2 − �x − i��2�

, �6.8�

�1 = N1e−�x − i��2/4a2 �3a4 + 2a2i�x − i�� + �x − i��4��x − i��
�a2 − �x − i��2�

. �6.9�

The probabilistic interpretation of the wave function of non-Hermitian quantum systems45 is given
by a pseudonorm that is not positive definite,

�
−�

�

dx���− x���x� = �, � = � 1. �6.10�

The corresponding energy spectrum is given by

En =
�n + 1��2

2a2 . �6.11�

We obtain for the complexified superintegrable potential the energy spectrum

E =
�n + m + 3��2

2a2 =
�p + 3��2

2a2 , �6.12�

with eigenfunction given by Eqs. �6.3� and �6.7�.

VII. CONCLUSION

The main result of this article is that we have constructed a Fock-type representation for the
most general cubic algebra generated by a second order and a third order order integral of motion
by means of parafermionic algebras. We present in detail the cubic algebra for all irreducible
quantum superintegrable potentials, the unitary representations, and the corresponding energy
spectra. All cases with finite cubic algebras belong to Case 2 of Sec. II. Thus they correspond to
�=0 in Eq. �2.5� and the structure function is given by Eq. �2.22�. In two cases of irreducible
potentials, the integrals of motion do not close in a finite-dimensional cubic algebra. It could be
interesting to see what kind of algebraic structure is involved in these cases. Comparing with an
earlier article10 we can see from this article how the cubic Poisson algebra is deformed into a cubic
algebra in quantum mechanics.

The method that we use to find energy spectra with the cubic algebra is independent of the
choice of coordinate systems. We could apply these results in the future to systems with a third
order integral that are separable in polar, elliptic, or parabolic coordinates. The method is also
independent of the metric and could be applied to superintegrable systems in other spaces. The
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methods developed in this article could be applied to other physical systems. One such system is
a Schrödinger equation with a position dependent mass;32 others arise in the context of SUSYQM.

Potential 3 is also a special case of the following potential:46,47

V =
�2

2
�k2x2 + m2y2� +

�1

x2 +
�2

y2 . �7.1�

In general, this system has integrals of motion of order greater than 3 and the more complicated
polynomial algebra should be studied.

All the potentials considered in this article can also be viewed as the sum of two one-
dimensional potentials, H=Hx+Hy. We have investigated each of these unidimensional potentials
in terms of SUSYQM. The superintegrability of these two-dimensional potentials seems to be
related to the SUSY property. Using the SUSY we have obtained the energy spectra and the
eigenfunctions. We have compared the results with those obtained using the cubic algebras. One
particular feature is the appearance of singlet states. For potential 1 there is an additional degen-
eracy that is not obtained by the algebraic method using the cubic algebra.

It was shown that many well known potentials such as the Dirac delta and Poschl–Teller
display a hidden SUSY where the reflection �parity� operator plays the role of the grading
operator.48 Potentials with elliptic functions can also be discussed from this point of view.49

Potentials with elliptic functions appear in Ref. 9. These cases are not truly superintegrable since
there exists a syzygy between the Hamiltonian, second order integral, and third order integral of
motion but it has been shown that the third order integral can be used to obtain the eigenfunctions
and the spectrum.50 We leave quantum potentials involving Painlevé transcendents for a future
article.

Superintegrable potentials and their integrals of motion can be complexified and investigated
from the point of view of PT-symmetric quantum mechanics. The complexification appears also as
a natural way to regularize the singular potentials.

It would be interesting to investigate the relation of pseudo-Hermitian Hamiltonians and
SUSY with superintegrable systems.
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APPENDIX: STRUCTURE FUNCTION FOR THE CASE �Å0

��N� = 384��10N10 − 1920��10N9 + �− 1536���8 + 1024	�9 + 3040��10 − 2304�8�2�N8

+ �6144���8 − 4096	�9 − 640��10 + 6144�8�2�N7 + �2304�2��6 − 3072	��73072��8

− 7680���8 + 5120	�9 − 2512��10 − 3072��6�2 + 2304�8�2 + 3072�7���N6

+ �− 6912�2��6 + 9216	��7 − 9216��8 + 1536���8 − 1024	�9 + 1712��10

+ 9216��6�2 − 7680�8�2 − 9216�7���N5 + �− 1536�3��4 + 3072	�2�5 − 6144���6

+ 6336�2��6 − 8448	��7�� + 8448��8 + 3264���8 − 2176	�9 + 428��10

+ 4608�2�4�2 − 8448��6�2 + 672�8�2 − 9216��5�� + 8448�7 + 3072�6�2

+ 6144�6�� + 12 288�7��N4 + �3072�3��4 − 6144	�2�5 + 12 288���6 − 1152�2��6

+ 1536	��7 − 1536��8 − 1920���8 + 1280	�9 − 616��10 − 12 288�2�4�2
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+ 1536��6�2 + 2688�8�2 + 24 576��5�� − 1536�7�� − 6144�6�2 − 24 576�6��

− 24 576�7��N3 + 	384�4��2 − 1024	�3�3 + 3072��2�4 − 1792�3��4 + 3584	�2�5

− 9216���6 − 784�2��6 − 1728��8 + 1728	��7 − 96���8 + 64	�9 +
119

2
��10

− 12 288�6K − 3072�3�2�2 + 6912�2�4�2 + 1728��6�2 − 624�8�2 + 9216�2�3��

− 13 824��5�� − 1728�7�� − 6144��4�2 + 1536�6�2 − 12 288��4�� + 9216�6��

+ 12 288�5�� − 12 288��5� + 18 432�7�
N2 + 	− 384�4��2 + 1024	�3�3

− 3072��2�4 + 256�3��4 − 512	�2�5 + 3072���6 + 208�2��6 − 960	��7 + 960��8

+ 288���8 − 192	�9 +
129

2
��1012 288�6K + 3072�3�2�2 − 960��6�2 − 288�8�2

− 9216�2�3�� + 960�7�� + 6144��4�2 + 1536�6�212 288��4�� + 6144�6��

− 12 288�5�� + 12 288��5� − 6144�7�
N + 	96�4��2 − 256	�3�3 + 768��2�4

+ 32�3��4 − 64	�2�5 − 384���6 + 20�2��6 + 144	��7 − 144��8 − 54���8 + 36	�9

−
117

8
��10 − 3072�6K + 768�4�2 − 768�3�2�2 − 480�2�4�2 + 144��6� + 87�8�2

− 3072�3��� + 2304�2�3�� + 960��5�� − 144�7�� + 3072�2�2�2 − 1536��4�2

− 576�6�2 + 6144�2�2�� − 3072��4�� − 2688�6�� − 12 288��3�� + 3072�5��

+ 12 288�4�2 − 3072��5� + 768�7� .
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