236 research outputs found

    Observation of Josephson coupling through an interlayer of antiferromagnetically ordered chromium

    Get PDF
    The supercurrent transport in metallic Josephson tunnel junctions with an additional interlayer made up by chromium, being an itinerant antiferromagnet, was studied. Uniform Josephson coupling was observed as a function of the magnetic field. The supercurrent shows a weak dependence on the interlayer thickness for thin chromium layers and decays exponentially for thicker films. The diffusion constant and the coherence length in the antiferromagnet were estimated. The antiferromagnetic state of the barrier was indirectly verified using reference samples. Our results are compared to macroscopic and microscopic models.Comment: Phys. Rev. B (2009), in prin

    Size Dependence of Metal-Insulator Transition in Stoichiometric Fe3O4 Nanocrystals

    Full text link
    Magnetite (Fe3O4) is one of the most actively studied materials with a famous metal-insulator transition (MIT), so-called the Verwey transition at around 123 K. Despite the recent progress in synthesis and characterization of Fe3O4 nanocrystals (NCs), it is still an open question how the Verwey transition changes on a nanometer scale. We herein report the systematic studies on size dependence of the Verwey transition of stoichiometric Fe3O4 NCs. We have successfully synthesized stoichiometric and uniform-sized Fe3O4 NCs with sizes ranging from 5 to 100 nm. These stoichiometric Fe3O4 NCs show the Verwey transition when they are characterized by conductance, magnetization, cryo-XRD, and heat capacity measurements. The Verwey transition is weakly size-dependent and becomes suppressed in NCs smaller than 20 nm before disappearing completely for less than 6 nm, which is a clear, yet highly interesting indication of a size effect of this well-known phenomena. Our current work will shed new light on this ages-old problem of Verwey transition.Comment: 18 pages, 4 figures, Nano Letters (accepted

    Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators

    Get PDF
    A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu[superscript 230], located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.Glenn Foundation for Medical ResearchEllison Medical FoundationJuvenile Diabetes Research Foundation InternationalUnited Mitochondrial Disease FoundationNational Institutes of Health (U.S.)National Institute of Allergy and Infectious Diseases (U.S.

    The impact of ventilation cooling towers on plus energy houses in southern Europe

    Get PDF
    This is an Open Access Article. It is published by Taylor and Francis under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Cooling homes is often important to maintain acceptable internal comfort. This can be achieved by both active and passive solutions. This research focused on passive systems and has examined one hypothesis: that evaporative cooling towers are an important element of plus-energy houses in southern Europe. Refinements to the design of the existing ventilation tower of a Solar Decathlon House developed by the Hochschule für Technik Stuttgart are proposed and tested in eight locations in Greece, Italy, Portugal and Spain using dynamic thermal and computational fluid dynamics simulations in order to predict energy consumption, mean and peak CO2 levels, temperatures, ventilation rates, cooling potential, fresh air distribution, indoor air quality and water consumption of the evaporative cooling system implemented within the tower. Results show that a 50% reduction of the annual energy demand for space cooling to be satisfied by other systems is achieved without compromising the internal comfort

    Assessment of variation in the alberta context tool: the contribution of unit level contextual factors and specialty in Canadian pediatric acute care settings

    Get PDF
    Background: There are few validated measures of organizational context and none that we located are parsimonious and address modifiable characteristics of context. The Alberta Context Tool (ACT) was developed to meet this need. The instrument assesses 8 dimensions of context, which comprise 10 concepts. The purpose of this paper is to report evidence to further the validity argument for ACT. The specific objectives of this paper are to: (1) examine the extent to which the 10 ACT concepts discriminate between patient care units and (2) identify variables that significantly contribute to between-unit variation for each of the 10 concepts. Methods: 859 professional nurses (844 valid responses) working in medical, surgical and critical care units of 8 Canadian pediatric hospitals completed the ACT. A random intercept, fixed effects hierarchical linear modeling (HLM) strategy was used to quantify and explain variance in the 10 ACT concepts to establish the ACT’s ability to discriminate between units. We ran 40 models (a series of 4 models for each of the 10 concepts) in which we systematically assessed the unique contribution (i.e., error variance reduction) of different variables to between-unit variation. First, we constructed a null model in which we quantified the variance overall, in each of the concepts. Then we controlled for the contribution of individual level variables (Model 1). In Model 2, we assessed the contribution of practice specialty (medical, surgical, critical care) to variation since it was central to construction of the sampling frame for the study. Finally, we assessed the contribution of additional unit level variables (Model 3). Results: The null model (unadjusted baseline HLM model) established that there was significant variation between units in each of the 10 ACT concepts (i.e., discrimination between units). When we controlled for individual characteristics, significant variation in the 10 concepts remained. Assessment of the contribution of specialty to between-unit variation enabled us to explain more variance (1.19% to 16.73%) in 6 of the 10 ACT concepts. Finally, when we assessed the unique contribution of the unit level variables available to us, we were able to explain additional variance (15.91% to 73.25%) in 7 of the 10 ACT concepts. Conclusion: The findings reported here represent the third published argument for validity of the ACT and adds to the evidence supporting its use to discriminate patient care units by all 10 contextual factors. We found evidence of relationships between a variety of individual and unit-level variables that explained much of this between-unit variation for each of the 10 ACT concepts. Future research will include examination of the relationships between the ACT’s contextual factors and research utilization by nurses and ultimately the relationships between context, research utilization, and outcomes for patients

    Mucosal Leishmaniasis Caused by Leishmania (Viannia) braziliensis and Leishmania (Viannia) guyanensis in the Brazilian Amazon

    Get PDF
    Background: Leishmania (Viannia) braziliensis is a parasite recognized as the most important etiologic agent of mucosal leishmaniasis (ML) in the New World. In Amazonia, seven different species of Leishmania, etiologic agents of human Cutaneous Leishmaniasis, have been described. Isolated cases of ML have been described for several different species of Leishmania: L. (V.) panamensis, L. (V.) guyanensis and L. (L.) amazonensis. Methodology: Leishmania species were characterized by polymerase chain reaction (PCR) of tissues taken from mucosal biopsies of Amazonian patients who were diagnosed with ML and treated at the Tropical Medicine Foundation of Amazonas (FMTAM) in Manaus, Amazonas state, Brazil. Samples were obtained retrospectively from the pathology laboratory and prospectively from patients attending the aforementioned tertiary care unit. Results: This study reports 46 cases of ML along with their geographical origin, 30 cases caused by L. (V.) braziliensis and 16 cases by L. (V.) guyanensis. This is the first record of ML cases in 16 different municipalities in the state of Amazonas and of simultaneous detection of both species in 4 municipalities of this state. It is also the first record of ML caused by L. (V.) guyanensis in the states of Para, Acre, and Rondonia and cases of ML caused by L. (V.) braziliensis in the state of Rondonia. Conclusions/Significance: L. (V.) braziliensis is the predominant species that causes ML in the Amazon region. However, contrary to previous studies, L. (V.) guyanensis is also a significant causative agent of ML within the region. The clinical and epidemiological expression of ML in the Manaus region is similar to the rest of the country, although the majority of ML cases are found south of the Amazon River.SUFRAMA[016/2004

    Learning form Nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.

    Get PDF
    The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies
    corecore