51 research outputs found

    Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano

    Get PDF
    International audienceCaldera-forming volcanic eruptions are low-frequency, highimpact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales1. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained2,3. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-formingeruption of Santorini volcano,Greece4, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption5,6. Despite the large volume of erupted magma4 (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicicmagmabatches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF
    Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt.%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–84 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An_78–An_92, Mg#_cpx = 82–87, Fo_79.5–Fo_87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An_60–An_68, Mg#_cpx = 71–78, Fo_70–Fo_76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Yb_melt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Yb_melt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal-melt equilibration within the evolved assemblage occurred at ~1140°C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300°C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene-melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene-melt equilibria return mid-crustal pressures of 4±1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO_2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO_2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral-melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.D.A.N. was supported by a Natural Environment Research Council studentship (NE/1528277/1) at the start of this project. SIMS analyses were supported by Natural Environment Research Council Ion Microprobe Facility award (IMF508/1013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00410-015-1170-

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF

    Bleachable Absorber Laser Amplifier and Detector (BALAD)

    No full text

    Self diffusion of europium, neodymium, thorium, and uranium in haplobasaltic melt: The effect of oxygen fugacity and the relationship to melt structure

    No full text
    We report new measurements of self diffusion coefficients (D) for Mg, Nd, Eu, Th, and U in a haplobasaltic (Fo_(15)Di_(40)An_(45)) melt at 1 atm, 1400–1500°C, and oxygen fugacities corresponding to air and the Fe-FeO buffer. Diffusion couples consisted of isotopically distinct melts of the same chemical composition, and isotopic concentration profiles in quenched couples were measured with an ion probe. The valence state distributions of Eu and U were determined from absorption spectroscopy and model calculations, which demonstrate a shift from Eu^(3+) and U^(5.5+) in air to Eu^(2.5+) and U^(4+) at Fe-FeO. D_(Mg), D_(Nd), and D_(Th) are independent of oxygen fugacity and agree well with our previous measurements. D_(Eu) = D_(Nd) in air and increases by 42% at Fe-FeO, while D_U = D_(Th) in air and shows a possible small increase of ∼20% at Fe-FeO. The change in D_(Eu) with oxygen fugacity matches the established ionic radius and charge dependence for Mg, Ca, Ba, Nd, Yb, Ti, and Zr, while diffusion coefficients for Zr, Th, U^(4+), and U^(5.5+) are independent of ionic radius and charge. Activation energies for all cations are approximately equal, independent of oxygen fugacity, and approximately match the activation energy for viscous flow. In addition, activation energies and diffusion coefficients recently measured for O and Si in basalt agree well with the present values. The good agreement between the various activation energies and between network modifier and network former diffusivities is consistent with a model in which diffusion of network modifying cations in low viscosity melts is controlled largely by the extrinsic influence of the melt network reorganization, with an additional influence from the intrinsic mobilities of the individual cations. The constant diffusion coefficient defined by the high ionic radius and charge elements is interpreted to represent the characteristic network diffusivity for this composition, which dominates over the intrinsic diffusivities for these elements. Elements with faster intrinsic diffusivities still display a small ionic radius and charge dependence. Diffusion coefficients in high viscosity melts are expected to be decoupled from the network, and thus may display a much greater dependence on ionic radius and charge

    Mg diffusion in anorthite: implications for the formation of early solar system planetesimals

    No full text
    We have measured the self diffusion coefficients of Mg, Ca, and Sr in anorthitic plagioclase in order to assess the potential of Mg isotopic heterogeneities in early solar system planetesimals to survive thermal metamorphism. Diffusion couples were constructed from polished single crystals of natural anorthite and synthetic, isotopically enriched anorthite glass. Couples were annealed at atmospheric pressure and 1200–1400°C and isotopic concentration profiles were measured with an ion microprobe. The results show that Mg diffusion in anorthite is surprisingly fast, with D_(Mg) being over 2 orders of magnitude greater than D_(Sr). This indicates that the diffusion coefficient of Mg in anorthite cannot be approximated with that for Sr. Mg diffusion in the c-direction is also slightly faster than in the b-direction, while Ca and Sr diffusion appear to be isotropic. The results provide important constraints on the thermochronological history of anorthite-bearing mineral assemblages that preserve radiogenic ^(26)Mg excesses. In a planetesimal heated by the decay of ^(26)Al, the temperature at any point depends on the planetesimal size, time of formation, thermal conductivity, and depth within the planetesimal. Given sufficient heating, ^(26)Mg heterogeneities produced by the in-situ decay of ^(26)Al in Ca-, Al-rich inclusions (CAIs) and chondrules will be erased by diffusive equilibration. Using the self diffusion coefficient for Mg in anorthite measured in this study, we show that the common occurrence of ^(26)Mg excesses in these inclusions requires that they must be stored in small (≲15 km) bodies or the outermost rims of larger bodies for the first 1–2 million years of the solar system's history. For early formed bodies larger than 15 km, most of the mass will have been heated sufficiently for any radiogenic ^(26)Mg to have been diffusively homogenized in the Mg-rich planetary environment

    New Forces at Work in Mining: Industry View of Critical Technologies

    No full text
    corecore