197 research outputs found

    A revision of Cyanonectria and Geejayessia gen. nov., and related species with Fusarium-like anamorphs

    Get PDF
    A revision of Fusarium-like species associated with the plant genus Buxus led to a reconsideration of generic concepts in the Fusarium clade of the Nectriaceae. Phylogenetic analyses of the partial second largest subunit of the RNA polymerase II (rpb2) and the larger subunit of the ATP citrate lyase (acl1) gene exons confirm the existence of a clade, here called the terminal Fusarium clade, that includes genera such as Fusarium sensu stricto (including its Gibberella teleomorphs), Albonectria, Cyanonectria, “Haematonectria”, the newly described genus Geejayessia, and “Nectria” albida. Geejayessia accommodates five species. Four were previously classified in Nectria sensu lato, namely the black perithecial, KOH–species G. atrofusca and the orange or reddish, KOH+ G. cicatricum, G. desmazieri and G. zealandica. Geejayessia celtidicola is newly described. Following our phylogenetic analyses showing its close relationship with Cyanonectria cyanostoma, the former Gibbera buxi is recombined as the second species of Cyanonectria. A three gene phylogenetic analysis of multiple strains of each morphological species using translation elongation factor 1 α (tef-1), rpb2 and acl1 gene exons and introns confirms their status as distinct phylogenetic species. Internal transcribed spacer of the ribosomal RNA gene cluster and nuclear large ribosomal subunit sequences were generated as additional DNA barcodes for selected strains. The connection of Fusarium buxicola, often erroneously reported as the anamorph of G. desmazieri, with the bluish black and KOH+ perithecial species C. buxi is reinstated. Most Cyanonectria and Geejayessia species exhibit restricted host ranges on branches or twigs of Buxus species, Celtis occidentalis, or Staphylea trifolia. Their perithecia form caespitose clusters on well-developed, mostly erumpent stromata on the bark or outer cortex of the host and are relatively thin-walled, mostly smooth, and therefore reminiscent of the more or less astromatous, singly occurring perithecia of Cosmospora, Dialonectria, and Microcera. The cell walls in outer- and inner layers of the perithecial walls of Cyanonectria and Geejayessia have inconspicuous pore-like structures, as do representative species of Albonectria, Fusarium sensu stricto, “Haematonectria”, and “Nectria” albida. The taxonomic significance of these structures, which we call Samuels' pores, is discussed

    Lung inflammation does not affect the clearance kinetics of lipid nanocapsules following pulmonary administration

    Get PDF
    Lipid nanocapsules (LNCs) are semi-rigid spherical capsules with a triglyceride core that present a promising formulation option for the pulmonary delivery of drugs with poor aqueous solubility. Whilst the biodistribution of LNCs of different size has been studied following intravenous administration, the fate of LNCs following pulmonary delivery has not been reported. We investigated quantitatively whether lung inflammation affects the clearance of 50nm lipid nanocapsules, or is exacerbated by their pulmonary administration. Studies were conducted in mice with lipopolysaccharide-induced lung inflammation compared to healthy controls. Particle deposition and nanocapsule clearance kinetics were measured by single photon emission computed tomography/computed tomography (SPECT/CT) imaging over 48 h. A significantly lower lung dose of (111)In-LNC50 was achieved in the lipopolysaccharide (LPS)-treated animals compared with healthy controls (p<0.001). When normalised to the delivered lung dose, the clearance kinetics of (111)In-LNC50 from the lungs fit a first order model with an elimination half-life of 10.5±0.9h (R(2)=0.995) and 10.6±0.3h (R(2)=1.000) for healthy and inflamed lungs respectively (n=3). In contrast, (111)In-diethylene triamine pentaacetic acid (DTPA), a small hydrophilic molecule, was cleared rapidly from the lungs with the majority of the dose absorbed within 20min of administration. Biodistribution to lungs, stomach-intestine, liver, trachea-throat and blood at the end of the imaging period was unaltered by lung inflammation. This study demonstrated that lung clearance and whole body distribution of lipid nanocapsules were unaffected by the presence of acute lung inflammation

    New taxa of Neosartorya and Aspergillus in Aspergillus section Fumigati

    Get PDF
    Three new species of Neosartorya and one new Aspergillus of section Fumigati are proposed using a polyphasic approach based on morphology, extrolite production and partial β-tubulin, calmodulin, and actin gene sequences. The phylogenetic analyses using the three genes clearly show that the taxa grouped separately from the known species and confirmed the phenotypic differences. Neosartorya denticulata is characterized by its unique denticulate ascospores with a prominent equatorial furrow; N. assulata by well developed flaps on the convex surface of the ascospores which in addition have two distinct equatorial crests and N. galapagensis by a funiculose colony morphology, short and narrow conidiophores and ascospores with two wide equatorial crests with a microtuberculate convex surface. Aspergillus turcosus can be distinguished by velvety, gray turquoise colonies and short, loosely columnar conidial heads. The four new taxa also have unique extrolite profiles, which contain the mycotoxins gliotoxin and viriditoxin in N. denticulate; apolar compounds provisionally named NEPS in N. assulata and gregatins in N. galapagensis. A. turcosus produced kotanins. N.denticulata sp. nov., N. assulata sp. nov., N. galapagensis sp. nov., and A. turcosus sp. nov. are described and illustrated

    The Use of Spinning-Disk Confocal Microscopy for the Intravital Analysis of Platelet Dynamics in Response to Systemic and Local Inflammation

    Get PDF
    Platelets are central players in inflammation and are an important component of the innate immune response. The ability to visualize platelets within the live host is essential to understanding their role in these processes. Past approaches have involved adoptive transfer of labelled platelets, non-specific dyes, or the use of fluorescent antibodies to tag platelets in vivo. Often, these techniques result in either the activation of the platelet, or blockade of specific platelet receptors. In this report, we describe two new methods for intravital visualization of platelet biology, intravenous administration of labelled anti-CD49b, which labels all platelets, and CD41-YFP transgenic mice, in which a percentage of platelets express YFP. Both approaches label endogenous platelets and allow for their visualization using spinning-disk confocal fluorescent microscopy. Following LPS-induced inflammation, we were able to measure a significant increase in both the number and size of platelet aggregates observed within the vasculature of a number of different tissues. Real-time observation of these platelet aggregates reveals them to be large, dynamic structures that are continually expanding and sloughing-off into circulation. Using these techniques, we describe for the first time, platelet recruitment to, and behaviour within numerous tissues of the mouse, both under control conditions and following LPS induced inflammation

    Patterns of Early Gut Colonization Shape Future Immune Responses of the Host

    Get PDF
    The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system

    Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like anamorphs

    Get PDF
    A new pleosporalean family Tetraplosphaeriaceae is established to accommodate five new genera; 1) Tetraplosphaeria with small ascomata and anamorphs belonging to Tetraploa s. str., 2) Triplosphaeria characterised by hemispherical ascomata with rim-like side walls and anamorphs similar to Tetraploa but with three conidial setose appendages, 3) Polyplosphaeria with large ascomata surrounded by brown hyphae and anamorphs producing globose conidia with several setose appendages, 4) Pseudotetraploa, an anamorphic genus, having obpyriform conidia with pseudosepta and four to eight setose appendages, and 5) Quadricrura, an anamorphic genus, having globose conidia with one or two long setose appendages at the apex and four to five short setose appendages at the base. Fifteen new taxa in these genera mostly collected from bamboo are described and illustrated. They are linked by their Tetraploa s. l. anamorphs. To infer phylogenetic placement in the Pleosporales, analyses based on a combined dataset of small- and large-subunit nuclear ribosomal DNA (SSU+LSU nrDNA) was carried out. Tetraplosphaeriaceae, however, is basal to the main pleosporalean clade and therefore its relationship with other existing families was not completely resolved. To evaluate the validity of each taxon and to clarify the phylogenetic relationships within this family, further analyses using sequences from ITS-5.8S nrDNA (ITS), transcription elongation factor 1-α (TEF), and β-tubulin (BT), were also conducted. Monophyly of the family and that of each genus were strongly supported by analyses based on a combined dataset of the three regions (ITS+TEF+BT). Our results also suggest that Tetraplosphaeria (anamorph: Tetraploa s. str.) is an ancestral lineage within this family. Taxonomic placement of the bambusicolous fungi in Astrosphaeriella, Kalmusia, Katumotoa, Massarina, Ophiosphaerella, Phaeosphaeria, Roussoella, Roussoellopsis, and Versicolorisporium, are also discussed based on the SSU+LSU phylogeny

    Hemodialysis Removes Uremic Toxins That Alter the Biological Actions of Endothelial Cells

    Get PDF
    Chronic kidney disease is linked to systemic inflammation and to an increased risk of ischemic heart disease and atherosclerosis. Endothelial dysfunction associates with hypertension and vascular disease in the presence of chronic kidney disease but the mechanisms that regulate the activation of the endothelium at the early stages of the disease, before systemic inflammation is established remain obscure. In the present study we investigated the effect of serum derived from patients with chronic kidney disease either before or after hemodialysis on the activation of human endothelial cells in vitro, as an attempt to define the overall effect of uremic toxins at the early stages of endothelial dysfunction. Our results argue that uremic toxins alter the biological actions of endothelial cells and the remodelling of the extracellular matrix before signs of systemic inflammatory responses are observed. This study further elucidates the early events of endothelial dysfunction during toxic uremia conditions allowing more complete understanding of the molecular events as well as their sequence during progressive renal failure

    An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella

    Get PDF
    A comprehensive phylogenetic reassessment of the ascomycete genus Cosmospora (Hypocreales, Nectriaceae) is undertaken using fresh isolates and historical strains, sequences of two protein encoding genes, the second largest subunit of RNA polymerase II (rpb2), and a new phylogenetic marker, the larger subunit of ATP citrate lyase (acl1). The result is an extensive revision of taxonomic concepts, typification, and nomenclatural details of many anamorph- and teleomorph-typified genera of the Nectriaceae, most notably Cosmospora and Fusarium. The combined phylogenetic analysis shows that the present concept of Fusarium is not monophyletic and that the genus divides into two large groups, one basal in the family, the other terminal, separated by a large group of species classified in genera such as Calonectria, Neonectria, and Volutella. All accepted genera received high statistical support in the phylogenetic analyses. Preliminary polythetic morphological descriptions are presented for each genus, providing details of perithecia, micro- and/or macro-conidial synanamorphs, cultural characters, and ecological traits. Eight species are included in our restricted concept of Cosmospora, two of which have previously documented teleomorphs and all of which have Acremonium-like microconidial anamorphs. A key is provided to the three anamorphic species recognised in Atractium, which is removed from synonymy with Fusarium and epitypified for two macroconidial synnematous species and one sporodochial species associated with waterlogged wood. Dialonectria is recognised as distinct from Cosmospora and two species with teleomorph, macroconidia and microconidia are accepted, including the new species D. ullevolea. Seven species, one with a known teleomorph, are classified in Fusicolla, formerly considered a synonym of Fusarium including members of the F. aquaeductuum and F. merismoides species complex, with several former varieties raised to species rank. Originally a section of Nectria, Macroconia is raised to generic rank for five species, all producing a teleomorph and macroconidial anamorph. A new species of the Verticillium-like anamorphic genus Mariannaea is described as M. samuelsii. Microcera is recognised as distinct from Fusarium and a key is included for four macroconidial species, that are usually parasites of scale insects, two of them with teleomorphs. The four accepted species of Stylonectria each produce a teleomorph and micro- and macroconidial synanamorphs. The Volutella species sampled fall into three clades. Pseudonectria is accepted for a perithecial and sporodochial species that occurs on Buxus. Volutella s. str. also includes perithecial and/or sporodochial species and is revised to include a synnematous species formerly included in Stilbella. The third Volutella-like clade remains unnamed. All fungi in this paper are named using a single name system that gives priority to the oldest generic names and species epithets, irrespective of whether they are originally based on anamorph or teleomorph structures. The rationale behind this is discussed
    corecore