480 research outputs found

    A transition in the spectrum of the topological sector of ϕ24\phi_2^4 theory at strong coupling

    Full text link
    We investigate the strong coupling region of the topological sector of the two-dimensional ϕ4\phi^4 theory. Using discrete light cone quantization (DLCQ), we extract the masses of the lowest few excitations and observe level crossings. To understand this phenomena, we evaluate the expectation value of the integral of the normal ordered ϕ2\phi^2 operator and we extract the number density of constituents in these states. A coherent state variational calculation confirms that the number density for low-lying states above the transition coupling is dominantly that of a kink-antikink-kink state. The Fourier transform of the form factor of the lowest excitation is extracted which reveals a structure close to a kink-antikink-kink profile. Thus, we demonstrate that the structure of the lowest excitations becomes that of a kink-antikink-kink configuration at moderately strong coupling. We extract the critical coupling for the transition of the lowest state from that of a kink to a kink-antikink-kink. We interpret the transition as evidence for the onset of kink condensation which is believed to be the physical mechanism for the symmetry restoring phase transition in two-dimensional ϕ4\phi^4 theory.Comment: revtex4, 14 figure

    Spectral stochastic processes arising in quantum mechanical models with a non-L2 ground state

    Full text link
    A functional integral representation is given for a large class of quantum mechanical models with a non--L2 ground state. As a prototype the particle in a periodic potential is discussed: a unique ground state is shown to exist as a state on the Weyl algebra, and a functional measure (spectral stochastic process) is constructed on trajectories taking values in the spectrum of the maximal abelian subalgebra of the Weyl algebra isomorphic to the algebra of almost periodic functions. The thermodynamical limit of the finite volume functional integrals for such models is discussed, and the superselection sectors associated to an observable subalgebra of the Weyl algebra are described in terms of boundary conditions and/or topological terms in the finite volume measures.Comment: 15 pages, Plain Te

    On Renormalization Group Flows and Polymer Algebras

    Get PDF
    In this talk methods for a rigorous control of the renormalization group (RG) flow of field theories are discussed. The RG equations involve the flow of an infinite number of local partition functions. By the method of exact beta-function the RG equations are reduced to flow equations of a finite number of coupling constants. Generating functions of Greens functions are expressed by polymer activities. Polymer activities are useful for solving the large volume and large field problem in field theory. The RG flow of the polymer activities is studied by the introduction of polymer algebras. The definition of products and recursive functions replaces cluster expansion techniques. Norms of these products and recursive functions are basic tools and simplify a RG analysis for field theories. The methods will be discussed at examples of the Φ4\Phi^4-model, the O(N)O(N) σ\sigma-model and hierarchical scalar field theory (infrared fixed points).Comment: 32 pages, LaTeX, MS-TPI-94-12, Talk presented at the conference ``Constructive Results in Field Theory, Statistical Mechanics and Condensed Matter Physics'', 25-27 July 1994, Palaiseau, Franc

    Kinematical Hilbert Spaces for Fermionic and Higgs Quantum Field Theories

    Get PDF
    We extend the recently developed kinematical framework for diffeomorphism invariant theories of connections for compact gauge groups to the case of a diffeomorphism invariant quantum field theory which includes besides connections also fermions and Higgs fields. This framework is appropriate for coupling matter to quantum gravity. The presence of diffeomorphism invariance forces us to choose a representation which is a rather non-Fock-like one : the elementary excitations of the connection are along open or closed strings while those of the fermions or Higgs fields are at the end points of the string. Nevertheless we are able to promote the classical reality conditions to quantum adjointness relations which in turn uniquely fixes the gauge and diffeomorphism invariant probability measure that underlies the Hilbert space. Most of the fermionic part of this work is independent of the recent preprint by Baez and Krasnov and earlier work by Rovelli and Morales-Tec\'otl because we use new canonical fermionic variables, so-called Grassman-valued half-densities, which enable us to to solve the difficult fermionic adjointness relations.Comment: 26p, LATE

    Initial conditions for turbulent mixing simulations

    Get PDF
    In the context of the classical Rayleigh-Taylor hydrodynamical instability, we examine the much debated question of models for initial conditions and the possible influence of unrecorded long wave length contributions to the instability growth rate α.У контексті класичної гідродинамічної нестійкості Релея - Тейлора вивчено дискусійне питання моделей для початкових умов і можливий вплив незафіксованих далекосяжних вкладів на швидкість росту нестійкості альфа

    SBV Regularity for Genuinely Nonlinear, Strictly Hyperbolic Systems of Conservation Laws in one space dimension

    Get PDF
    We prove that if tu(t)BV(R)t \mapsto u(t) \in \mathrm {BV}(\R) is the entropy solution to a N×NN \times N strictly hyperbolic system of conservation laws with genuinely nonlinear characteristic fields ut+f(u)x=0, u_t + f(u)_x = 0, then up to a countable set of times {tn}nN\{t_n\}_{n \in \mathbb N} the function u(t)u(t) is in SBV\mathrm {SBV}, i.e. its distributional derivative uxu_x is a measure with no Cantorian part. The proof is based on the decomposition of ux(t)u_x(t) into waves belonging to the characteristic families u(t)=i=1Nvi(t)r~i(t),vi(t)M(R), r~i(t)RN, u(t) = \sum_{i=1}^N v_i(t) \tilde r_i(t), \quad v_i(t) \in \mathcal M(\R), \ \tilde r_i(t) \in \mathrm R^N, and the balance of the continuous/jump part of the measures viv_i in regions bounded by characteristics. To this aim, a new interaction measure \mu_{i,\jump} is introduced, controlling the creation of atoms in the measure vi(t)v_i(t). The main argument of the proof is that for all tt where the Cantorian part of viv_i is not 0, either the Glimm functional has a downward jump, or there is a cancellation of waves or the measure μi,jump\mu_{i,\mathrm{jump}} is positive

    Self-dual noncommutative \phi^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory

    Full text link
    We study quartic matrix models with partition function Z[E,J]=\int dM \exp(trace(JM-EM^2-(\lambda/4)M^4)). The integral is over the space of Hermitean NxN-matrices, the external matrix E encodes the dynamics, \lambda>0 is a scalar coupling constant and the matrix J is used to generate correlation functions. For E not a multiple of the identity matrix, we prove a universal algebraic recursion formula which gives all higher correlation functions in terms of the 2-point function and the distinct eigenvalues of E. The 2-point function itself satisfies a closed non-linear equation which must be solved case by case for given E. These results imply that if the 2-point function of a quartic matrix model is renormalisable by mass and wavefunction renormalisation, then the entire model is renormalisable and has vanishing \beta-function. As main application we prove that Euclidean \phi^4-quantum field theory on four-dimensional Moyal space with harmonic propagation, taken at its self-duality point and in the infinite volume limit, is exactly solvable and non-trivial. This model is a quartic matrix model, where E has for N->\infty the same spectrum as the Laplace operator in 4 dimensions. Using the theory of singular integral equations of Carleman type we compute (for N->\infty and after renormalisation of E,\lambda) the free energy density (1/volume)\log(Z[E,J]/Z[E,0]) exactly in terms of the solution of a non-linear integral equation. Existence of a solution is proved via the Schauder fixed point theorem. The derivation of the non-linear integral equation relies on an assumption which we verified numerically for coupling constants 0<\lambda\leq (1/\pi).Comment: LaTeX, 64 pages, xypic figures. v4: We prove that recursion formulae and vanishing of \beta-function hold for general quartic matrix models. v3: We add the existence proof for a solution of the non-linear integral equation. A rescaling of matrix indices was necessary. v2: We provide Schwinger-Dyson equations for all correlation functions and prove an algebraic recursion formula for their solutio

    A theorem concerning twisted and untwisted partition functions in U(N) and SU(N) lattice gauge theories

    Get PDF
    In order to get a clue to understanding the volume-dependence of vortex free energy (which is defined as the ratio of the twisted against the untwisted partition function), we investigate the relation between vortex free energies defined on lattices of different sizes. An equality is derived through a simple calculation which equates a general linear combination of vortex free energies defined on a lattice to that on a smaller lattice. The couplings in the denominator and in the numerator however shows a discrepancy, and we argue that it vanishes in the thermodynamic limit. Comparison between our result and the work of Tomboulis is also presented. In the appendix we carefully examine the proof of quark confinement by Tomboulis and summarize its loopholes.Comment: 19 pages, 4 figures; v2:Clarifying comments added; v3:Appendix added, the version published in Physics Letters

    Vanishing of Beta Function of Non Commutative Φ44\Phi^4_4 Theory to all orders

    Get PDF
    The simplest non commutative renormalizable field theory, the ϕ4\phi_4 model on four dimensional Moyal space with harmonic potential is asymptotically safe up to three loops, as shown by H. Grosse and R. Wulkenhaar, M. Disertori and V. Rivasseau. We extend this result to all orders.Comment: 12 pages, 3 figure

    Quantum field theory on manifolds with a boundary

    Full text link
    We discuss quantum theory of fields \phi defined on (d+1)-dimensional manifold {\cal M} with a boundary {\cal B}. The free action W_{0}(\phi) which is a bilinear form in \phi defines the Gaussian measure with a covariance (Green function) {\cal G}. We discuss a relation between the quantum field theory with a fixed boundary condition \Phi and the theory defined by the Green function {\cal G}. It is shown that the latter results by an average over \Phi of the first. The QFT in (anti)de Sitter space is treated as an example. It is shown that quantum fields on the boundary are more regular than the ones on (anti) de Sitter space.Comment: The version to appear in Journal of Physics A, a discussion on the relation to other works in the field is adde
    corecore