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Abstract

The simplest non-commutative renormalizable field theory, the φ4 model on four-dimensional Moyal space with harmonic potential is asymp-
totically safe up to three loops, as shown by H. Grosse and R. Wulkenhaar, M. Disertori and V. Rivasseau. We extend this result to all orders.
© 2007 Published by Elsevier B.V.

PACS: 11.10.Nx; 11.10.Gh

1. Introduction

Non-commutative (NC) quantum field theory (QFT) may be important for physics beyond the standard model and for under-
standing the quantum Hall effect [1]. It also occurs naturally as an effective regime of string theory [2,3].

The simplest NC field theory is the φ4
4 model on the Moyal space. Its perturbative renormalizability at all orders has been proved

by Grosse, Wulkenhaar and followers [4–7]. Grosse and Wulkenhaar solved the difficult problem of ultraviolet/infrared mixing by
introducing a new harmonic potential term inspired by the Langmann–Szabo (LS) duality [8] between positions and momenta.

Other renormalizable models of the same kind, including the orientable fermionic Gross–Neveu model [9], have been recently
also shown renormalizable at all orders and techniques such as the parametric representation have been extended to NCQFT [10].
It is now tempting to conjecture that commutative renormalizable theories in general have NC renormalizable extensions to Moyal
spaces which imply new parameters. However the most interesting case, namely the one of gauge theories, still remains elusive.

Once perturbative renormalization is understood, the next problem is to compute the renormalization group (RG) flow. It is well
known that the ordinary commutative φ4

4 model is not asymptotically free in the ultraviolet regime. This problem, called the Landau
ghost or triviality problem affects also quantum electrodynamics. It almost killed quantum field theory, which was resurrected by
the discovery of ultraviolet asymptotic freedom in non-Abelian gauge theory [11].

An amazing discovery was made in [12]: the non-commutative φ4
4 model does not exhibit any Landau ghost at one loop. It is not

asymptotically free either. For any renormalized Grosse–Wulkenhaar harmonic potential parameter Ωren > 0, the running Ω tends
to the special LS dual point Ωbare = 1 in the ultraviolet. As a result the RG flow of the coupling constant is simply bounded.1 This
result was extended up to three loops in [13].
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In this Letter we compute the flow at the special LS dual point Ω = 1, and check that the beta function vanishes at all orders
using a kind of Ward identity inspired by those of the Thirring or Luttinger models [14–16]. Note however that in contrast with
these models, the model we treat has quadratic (mass) divergences.

The non-perturbative construction of the model should combine this result and a non-perturbative multiscale analysis [17,18].
Also we think the Ward identities discovered here might be important for the future study of more singular models such as Chern–
Simons or Yang–Mills theories, and in particular for those which have been advocated in connection with the Quantum Hall effect
[19–22].

In this Letter we give the complete argument of the vanishing of the beta function at all orders in the renormalized coupling, but
we assume knowledge of renormalization and effective expansions as described e.g. in [18], and of the basic papers for renormal-
ization of NC φ4

4 in the matrix base [4–6].

2. Notations and main result

We adopt simpler notations than those of [12,13], and normalize so that θ = 1, hence have no factor of π or θ .
The bare propagator in the matrix base at Ω = 1 is

(2.1)Cmn;kl = Cmnδmlδnk; Cmn = 1

A + m + n
,

where A = 2 + μ2/4, m,n ∈ N
2 (μ being the mass) and we used the notations

(2.2)δml = δm1l1δm2l2, m + n = m1 + m2 + n1 + n2.

There are two version of this theory, the real and complex one. We focus on the complex case, the result for the real case follows
easily [13].

The generating functional is:

Z(η, η̄) =
∫

dφ dφ̄ e−S(φ̄,φ)+F(η̄,η;φ̄,φ),

F (η̄, η; φ̄, φ) = φ̄η + η̄φ,

(2.3)S(φ̄,φ) = φ̄Xφ + φXφ̄ + Aφ̄φ + λ

2
φφ̄φφ̄,

where traces are implicit and the matrix Xmn stands for mδmn. S is the action and F the external sources.
We denote Γ 4(a, b, c, d) the amputated one particle irreducible four point function with external indices set to a, b, c, d . Fur-

thermore we denote Σ(a,b) the amputated one particle irreducible two point function with external indices set to a, b (also called
the self-energy). The wave function renormalization is 1 − ∂Σ(0,0) where ∂Σ(0,0) ≡ ∂LΣ = ∂RΣ = Σ(1,0) − Σ(0,0) is the
derivative of the self-energy with respect to one of the two indices a or b [13]. Our main result is:

Theorem. The equation

(2.4)Γ 4(0,0,0,0) = λ
(
1 − ∂Σ(0,0)

)2

holds up to irrelevant terms2 to all orders of perturbation, either as a bare equation with fixed ultraviolet cutoff, or as an equation
for the renormalized theory. In the latter case λ should still be understood as the bare constant, but reexpressed as a series in
powers of λren.

3. Ward identities

We orient the propagators from a φ̄ to a φ. For a field φ̄ab we call the index a a left index and the index, b a right index. The first
(second) index of a φ̄ always contracts with the second (first) index of a φ. Consequently for φcd , c is a right index and d is a left
index.

Let U = eıB with B a small Hermitian matrix. We consider the “left” (as it acts only on the left indices) change of variables3:

(3.1)φU = φU ; φ̄U = U†φ̄.

The variation of the action is, at first order:

(3.2)δS = φUXU†φ̄ − φXφ̄ ≈ ı(φBXφ̄ − φXBφ̄) = ıB(Xφ̄φ − φ̄φX)

2 Irrelevant terms include in particular all non-planar or planar with more than one broken face contributions.
3 There is a similar “right” change of variables, acting only on the right indices.
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and the variation of the external sources is:

(3.3)δF = U†φ̄η − φ̄η + η̄φU − η̄φ ≈ −ıBφ̄η + ıη̄φB = ıB(−φ̄η + η̄φ).

We obviously have:

δ lnZ

δBba

= 0 = 1

Z(η̄, η)

∫
dφ̄ dφ

(
− δS

δBba

+ δF

δBba

)
e−S+F

(3.4)= 1

Z(η̄, η)

∫
dφ̄ dφ e−S+F

(−[Xφ̄φ − φ̄φX]ab + [−φ̄η + η̄φ]ab

)
.

We now take ∂η∂η̄|η=η̄=0 on the above expression. As we have at most two insertions we get only the connected components of
the correlation functions.

(3.5)0 = 〈
∂η∂η̄

(−[Xφ̄φ − φ̄φX]ab + [−φ̄η + η̄φ]ab

)
eF(η̄,η)

∣∣
0

〉
c
,

which gives:

(3.6)

〈
∂(η̄φ)ab

∂η̄

∂(φ̄η)

∂η
− ∂(φ̄η)ab

∂η

∂(η̄φ)

∂η̄
− [Xφ̄φ − φ̄φX]ab

∂(η̄φ)

∂η̄

∂(φ̄η)

∂η

〉
c

= 0.

Using the explicit form of X we get:

(a − b)

〈
[φ̄φ]ab

∂(η̄φ)

∂η̄

∂(φ̄η)

∂η

〉
c

=
〈
∂(η̄φ)ab

∂η̄

∂(φ̄η)

∂η

〉
c

−
〈
∂(φ̄η)ab

∂η

∂(η̄φ)

∂η̄

〉
c

,

and for η̄βαηνμ we get:

(3.7)(a − b)
〈[φ̄φ]abφαβφ̄μν

〉
c
= 〈δaβφαbφ̄μν〉c − 〈δbμφ̄aνφαβ〉c.

We now restrict to terms in the above expressions which are planar with a single external face, as all others are irrelevant. Such
terms have α = ν, a = β and b = μ. The Ward identity for 2 point function reads:

(3.8)(a − b)
〈[φ̄φ]abφνaφ̄bν

〉
c
= 〈φνbφ̄bν〉c − 〈φ̄aνφνa〉c

(repeated indices are not summed).
Derivating further we get:

(a − b)
〈[φ̄φ]ab∂η̄1(η̄φ)∂η1(φ̄η)∂η̄2(η̄φ)∂η2(φ̄η)

〉
c

(3.9)= 〈
∂η̄1(η̄φ)∂η1(φ̄η)

[
∂η̄2(η̄φ)ab∂η2(φ̄η) − ∂η2(φ̄η)ab∂η̄2(η̄φ)

]〉
c
+ 1 ↔ 2.

Take η̄1βα , η1νμ, η̄2δγ and η2σρ . We get:

(a − b)
〈[φ̄φ]abφαβφ̄μνφγ δφ̄ρσ

〉
c
=〈φαβφ̄μνδaδφγbφ̄ρσ 〉c − 〈φαβφ̄μνφγ δφ̄aσ δbρ〉c

(3.10)+ 〈φγδφ̄ρσ δaβφαbφ̄μν〉c − 〈φγδφ̄ρσ φαβφ̄aνδbμ〉c.
Again neglecting all terms which are not planar with a single external face leads to

(a − b)
〈
φαa[φ̄φ]abφ̄bνφνδφ̄δα

〉
c
= 〈φαbφ̄bνφνδφ̄δα〉c − 〈φαaφ̄aνφνδφ̄δα〉c.

Clearly there are similar identities for 2p point functions for any p.
The indices a and b are left indices, so that we have the Ward identity with an insertion on a left face4 as represented in Fig. 1.
We conclude this section by several remarks on the real theory. If φ(x) is a real function then φab is a Hermitian matrix. The

action and the sources are:

(3.11)S = φXφ + λ

4
φ4, F = φη.

We perform the change of variables (preserving the Hermitian character of φ):

(3.12)φU = UφU†

with constant U a unitary matrix. A straightforward computation shows that the Jacobian of this change of variables is 1 and the
reader can check that the method above gives Ward identities identical with those of the complex model.

4 There is a similar Ward identity obtained with the “right” transformation, consequently with the insertion on a right face.
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Fig. 1. The Ward identity for a 2p point function with insertion on the left face.

Fig. 2. The dressed and the bare propagators.

4. Proof of the theorem

We start this section by some definitions: we will denote G4(m,n, k, l) the connected four point function restricted to the planar
one broken face case, where m, n, k, l are the indices of the external face in the correct cyclic order. The first index m always
represents a left index.

Similarly, G2(m,n) is the connected planar one broken face two point function with m, n the indices on the external face (also
called the dressed propagator, see Fig. 2). G2(m,n) and Σ(m,n) are related by:

(4.1)G2(m,n) = Cmn

1 − CmnΣ(m,n)
= 1

C−1
mn − Σ(m,n)

.

Gins(a, b; . . .) will denote the planar one broken face connected function with one insertion on the left border where the matrix
index jumps from a to b. With this notations the Ward identity (3.8) writes:

(4.2)(a − b)G2
ins(a, b;ν) = G2(b, ν) − G2(a, ν).

All the identities we use, either Ward identities or the Dyson equation of motion can be written either for the bare theory or for
the theory with complete mass renormalization, which is the one considered in [13]. In the first case the parameter A in (2.1) is the
bare one, Abare and there is no mass subtraction. In the second case the parameter A in (2.1) is Aren = Abare − Σ(0,0), and every
two point 1PI subgraph is subtracted at 0 external indices.5 Throughout this Letter ∂L will denote the derivative with respect to a
left index and ∂R the one with respect to a right index. When the two derivatives are equal we will employ the generic notation ∂ .

Let us prove first the theorem in the mass-renormalized case, then in the next subsection in the bare case. Indeed the mass
renormalized theory used is free from any quadratic divergences, and remaining logarithmic subdivergences in the ultra violet
cutoff can be removed easily by going, for instance, to the “useful” renormalized effective series, as explained in [13].

We analyze a four point connected function G4(0,m,0,m) with index m 
= 0 on the right borders. This explicit break of left–right
symmetry is adapted to our problem.

Consider a φ̄ external line and the first vertex hooked to it. Turning right on the m border at this vertex we meet a new line (the
slashed line in Fig. 3). The slashed line either separates the graph into two disconnected components (G4

(1) and G4
(2) in Fig. 3) or not

(G4
(3) in Fig. 3). Furthermore, if the slashed line separates the graph into two disconnected components the first vertex may either

belong to a four point component (G4
(1) in Fig. 3) or to a two point component (G4

(2) in Fig. 3).
We stress that this is a classification of graphs: the different components depicted in Fig. 3 take into account all the combinatoric

factors. Furthermore, the setting of the external indices to 0 on the left borders and m on the right borders distinguishes the G4
(1)

and G4
(2) from their counterparts “pointing upwards”: indeed, the latter are classified in G4

(3)!
We have thus the Dyson equation:

(4.3)G4(0,m,0,m) = G4
(1)(0,m,0,m) + G4

(2)(0,m,0,m) + G4
(3)(0,m,0,m).

5 These mass subtractions need not be rearranged into forests since 1PI 2 point subgraphs never overlap non-trivially.
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Fig. 3. The Dyson equation.

The second term, G4
(2), is zero. Indeed the mass renormalized two point insertion is zero, as it has the external left index set to

zero. Note that this is an insertion exclusively on the left border. The simplest case of such an insertion is a (left) tadpole. We will
(naturally) call a general insertion touching only the left border a “generalized left tadpole” and denote it by T L.

We will prove that G4
(1) + G4

(3) yields Γ 4 = λ(1 − ∂Σ)2 after amputation of the four external propagators.

We start with G4
(1). It is of the form:

(4.4)G4
(1)(0,m,0,m) = λC0mG2(0,m)G2

ins(0,0;m).

By the Ward identity we have:

(4.5)G2
ins(0,0;m) = lim

ζ→0
G2

ins(ζ,0;m) = lim
ζ→0

G2(0,m) − G2(ζ,m)

ζ
= −∂LG2(0,m).

Using the explicit form of the bare propagator we have ∂LC−1
ab = ∂RC−1

ab = ∂C−1
ab = 1. Reexpressing G2(0,m) by Eq. (4.1) we

conclude that:

G4
(1)(0,m,0,m) = λC0m

C0mC2
0m[1 − ∂LΣ(0,m)]

[1 − C0mΣ(0,m)](1 − C0mΣ(0,m))2

(4.6)= λ
[
G2(0,m)

]4 C0m

G2(0,m)

[
1 − ∂LΣ(0,m)

]
.

The self energy is (again up to irrelevant terms [5]):

(4.7)Σ(m,n) = Σ(0,0) + (m + n)∂Σ(0,0).

Therefore up to irrelevant terms (C−1
0m = m + Aren) we have:

(4.8)G2(0,m) = 1

m + Abare − Σ(0,m)
= 1

m[1 − ∂Σ(0,0)] + Aren
,

and

(4.9)
C0m

G2(0,m)
= 1 − ∂Σ(0,0) + Aren

m + Aren
∂Σ(0,0).

Inserting Eq. (4.9) into Eq. (4.6) holds:

(4.10)G4
(1)(0,m,0,m) = λ

[
G2(0,m)

]4
(

1 − ∂Σ(0,0) + Aren

m + Aren
∂Σ(0,0)

)[
1 − ∂LΣ(0,m)

]
.

For the G4
(3)(0,m,0,m) one starts by “opening” the face which is “first on the right”. The summed index of this face is called p

(see Fig. 3). For bare Green functions this reads:

(4.11)G
4,bare
(3) (0,m,0,m) = C0m

∑
p

G
4,bare
ins (p,0;m,0,m).

When passing to mass renormalized Green functions one must be cautious. It is possible that the face p belonged to a 1PI two
point insertion in G4

(3) (see the left-hand side in Fig. 4). Upon opening the face p this 2 point insertion disappears (see right-hand
side of Fig. 4)! When renormalizing, the counterterm corresponding to this kind of two point insertion will be substracted on the
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Fig. 4. Two point insertion and opening of the loop with index p.

Fig. 5. The self energy.

left-hand side of Eq. (4.11), but not on the right-hand side. In the equation for G4
(3)(0,m,0,m) one must therefore add its missing

counterterm, so that:

(4.12)G4
(3)(0,m,0,m) = C0m

∑
p

G4
ins(0,p;m,0,m) − C0m(CTlost)G

4(0,m,0,m).

It is clear that not all 1PI 2 point insertions on the left-hand side of Fig. 4 will be “lost” on the right-hand side. If the insertion
is a “generalized left tadpole” it is not “lost” by opening the face p (imagine a tadpole pointing upwards in Fig. 4: clearly it will
not be opened by opening the line). We will call the 2 point 1PI insertions “lost” on the right-hand side ΣR(m,n). Denoting the
generalized left tadpole T L we can write (see Fig. 5):

(4.13)Σ(m,n) = T L(m,n) + ΣR(m,n).

Note that as T L(m,n) is an insertion exclusively on the left border, it does not depend upon the right index n. We therefore have
∂Σ(m,n) = ∂RΣ(m,n) = ∂RΣR(m,n).

The missing mass counterterm writes:

(4.14)CTlost = ΣR(0,0) = Σ(0,0) − T L.

In order to evaluate ΣR(0,0) we proceed by opening its face p and using the Ward identity (3.8), to obtain:

(4.15)ΣR(0,0) = 1

G2(0,0)

∑
p

G2
ins(0,p;0) = 1

G2(0,0)

∑
p

1

p

[
G2(0,0) − G2(p,0)

] =
∑
p

1

p

(
1 − G2(p,0)

G2(0,0)

)
.

Using Eqs. (4.12) and (4.15) we have:

(4.16)G4
(3)(0,m,0,m) = C0m

∑
p

G4
ins(0,p;m,0,m) − C0mG4(0,m,0,m)

∑
p

1

p

(
1 − G2(p,0)

G2(0,0)

)
.

But by the Ward identity (3.11):

(4.17)C0m

∑
p

G4
ins(0,p;m,0,m) = C0m

∑
p

1

p

(
G4(0,m,0,m) − G4(p,m,0,m)

)
.

The second term in Eq. (4.17), having at least three denominators linear in p, is irrelevant.6 Substituting Eq. (4.17) in Eq. (4.16) we
have:

(4.18)G4
(3)(0,m,0,m) = C0m

G4(0,m,0,m)

G2(0,0)

∑
p

G2(p,0)

p
.

6 Any perturbation order of G4(p,m,0,m) is a polynomial in ln(p) divided by p2. Therefore the sums over p above are always convergent.
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To conclude we must evaluate the sum in Eq. (4.18). Using Eq. (4.8) we have:

(4.19)
∑
p

G2(p,0)

p
=

∑
p

G2(p,0)

p

(
1

G2(0,1)
− 1

G2(0,0)

)
1

1 − ∂Σ(0,0)
.

In order to interpret the two terms in the above equation we start by performing the same manipulations as in Eq. (4.15) for
ΣR(0,1). We get:

(4.20)ΣR(0,1) =
∑
p

1

p

(
1 − G2(p,1)

G2(0,1)

)
=

∑
p

1

p

(
1 − G2(p,0)

G2(0,1)

)
,

where in the second equality the we have neglected an irrelevant term.
Substituting Eqs. (4.15) and (4.20) into Eq. (4.19) we get:

(4.21)
∑
p

G2(p,0)

p
= ΣR(0,0) − ΣR(0,1)

1 − ∂Σ(0,0)
= − ∂RΣR(0,0)

1 − ∂Σ(0,0)
= − ∂Σ(0,0)

1 − ∂Σ(0,0)

as ∂RΣR = ∂Σ . Hence:

G4
(3)(0,m,0,m) = −C0mG4(0,m,0,m)

1

G2(0,0)

∂Σ(0,0)

1 − ∂Σ(0,0)

(4.22)= −G4(0,m,0,m)
Aren∂Σ(0,0)

(m + Aren)[1 − ∂Σ(0,0)] .

Using (4.10) and (4.22), Eq. (4.3) rewrites as:

G4(0,m,0,m)

(
1 + Aren∂Σ(0,0)

(m + Aren)[1 − ∂Σ(0,0)]
)

(4.23)= λ
(
G2(0,m)

)4
(

1 − ∂Σ(0,0) + Aren

m + Aren
∂Σ(0,0)

)[
1 − ∂LΣ(0,m)

]
.

We multiply (4.23) by [1−∂Σ(0,0)] and amputate four times. As the differences Γ 4(0,m,0,m, )−Γ 4(0,0,0,0) and ∂LΣ(0,m)−
∂LΣ(0,0) are irrelevant we get:

(4.24)Γ 4(0,0,0,0) = λ
(
1 − ∂Σ(0,0)

)2
. �

4.1. Bare identity

Let us explain now why the main theorem is also true as an identity between bare functions, without any renormalization, but
with ultraviolet cutoff.

Using the same Ward identities, all the equations go through with only few differences:

– We should no longer add the lost mass counterterm in (4.12).
– The term G4

(2) is no longer zero.
– Eq. (4.9) and all propagators now involve the bare A parameter.

But these effects compensate. Indeed the bare G4
(2) term is the left generalized tadpole Σ − ΣR , hence

(4.25)G4
(2)(0,m,0,m) = C0,m

(
Σ(0,m) − ΣR(0,m)

)
G4(0,m,0,m).

Eq. (4.9) becomes up to irrelevant terms

(4.26)
Cbare

0m

G2,bare(0,m)
= 1 − ∂LΣ(0,0) + Abare

m + Abare
∂LΣ(0,0) − 1

m + Abare
Σ(0,0).

The first term proportional to Σ(0,m) in (4.25) combines with the new term in (4.26), and the second term proportional to ΣR(0,m)

in (4.25) is exactly the former “lost counterterm” contribution in (4.12). This proves (2.4) in the bare case.
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5. Conclusion

Since the main result of this Letter is proved up to irrelevant terms which converge at least like a power of the ultraviolet cutoff,
as this ultraviolet cutoff is lifted towards infinity, we not only get that the beta function vanishes in the ultraviolet regime, but that
it vanishes fast enough so that the total flow of the coupling constant is bounded. The reader might worry whether this conclusion
is still true for the full model which has Ωren 
= 1, hence no exact conservation of matrix indices along faces. The answer is yes,
because the flow of Ω towards its ultra violet limit Ωbare = 1 is very fast (see e.g. [13, Section II.2]).

The vanishing of the beta function is a step towards a full non-perturbative construction of this model without any cutoff, just
like e.g. the one of the Luttinger model [15,23]. But NC φ4

4 would be the first such four-dimensional model, and the only one
with non-logarithmic divergences. Tantalizingly, quantum field theory might actually behave better and more interestingly on non-
commutative than on commutative spaces.
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