Abstract

We discuss quantum theory of fields \phi defined on (d+1)-dimensional manifold {\cal M} with a boundary {\cal B}. The free action W_{0}(\phi) which is a bilinear form in \phi defines the Gaussian measure with a covariance (Green function) {\cal G}. We discuss a relation between the quantum field theory with a fixed boundary condition \Phi and the theory defined by the Green function {\cal G}. It is shown that the latter results by an average over \Phi of the first. The QFT in (anti)de Sitter space is treated as an example. It is shown that quantum fields on the boundary are more regular than the ones on (anti) de Sitter space.Comment: The version to appear in Journal of Physics A, a discussion on the relation to other works in the field is adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019