224 research outputs found

    ProLuCID: An improved SEQUEST-like algorithm with enhanced sensitivity and specificity

    Get PDF
    AbstractProLuCID, a new algorithm for peptide identification using tandem mass spectrometry and protein sequence databases has been developed. This algorithm uses a three tier scoring scheme. First, a binomial probability is used as a preliminary scoring scheme to select candidate peptides. The binomial probability scores generated by ProLuCID minimize molecular weight bias and are independent of database size. A modified cross-correlation score is calculated for each candidate peptide identified by the binomial probability. This cross-correlation scoring function models the isotopic distributions of fragment ions of candidate peptides which ultimately results in higher sensitivity and specificity than that obtained with the SEQUEST XCorr. Finally, ProLuCID uses the distribution of XCorr values for all of the selected candidate peptides to compute a Z score for the peptide hit with the highest XCorr. The ProLuCID Z score combines the discriminative power of XCorr and DeltaCN, the standard parameters for assessing the quality of the peptide identification using SEQUEST, and displays significant improvement in specificity over ProLuCID XCorr alone. ProLuCID is also able to take advantage of high resolution MS/MS spectra leading to further improvements in specificity when compared to low resolution tandem MS data. A comparison of filtered data searched with SEQUEST and ProLuCID using the same false discovery rate as estimated by a target-decoy database strategy, shows that ProLuCID was able to identify as many as 25% more proteins than SEQUEST. ProLuCID is implemented in Java and can be easily installed on a single computer or a computer cluster.This article is part of a Special Issue entitled: Computational Proteomics

    Mouse Gestation Length Is Genetically Determined

    Get PDF
    Background: Preterm birth is an enormous public health problem, affecting over 12 % of live births and costing over $26 billion in the United States alone. The causes are complex, but twin studies support the role of genetics in determining gestation length. Despite widespread use of the mouse in studies of the genetics of preterm birth, there have been few studies that actually address the precise natural gestation length of the mouse, and to what degree the timing of labor and birth is genetically determined. Methodology/Principal Findings: To further develop the mouse as a genetic model of preterm birth, we developed a highthroughput monitoring system and measured the gestation length in 15 inbred strains. Our results show an unexpectedly wide variation in overall gestation length between strains that approaches two full days, while intra-strain variation is quite low. Although litter size shows a strong inverse correlation with gestation length, genetic difference alone accounts for a significant portion of the variation. In addition, ovarian transplant experiments support a primary role of maternal genetics in the determination of gestation length. Preliminary analysis of gestation length in the C57BL/6J-Chr # A/J /NaJ chromosome substitution strain (B.A CSS) panel suggests complex genetic control of gestation length. Conclusions/Significance: Together, these data support the role of genetics in regulating gestation length and present th

    A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments

    Get PDF
    Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals

    Drilling-induced and logging-related features illustrated from IODP-ICDP Expedition 364 downhole logs and borehole imaging tools

    Get PDF
    Expedition 364 was a joint IODP and ICDP mission-specific platform (MSP) expedition to explore the Chicxulub impact crater buried below the surface of the YucatĂĄn continental shelf seafloor. In April and May 2016, this expedition drilled a single borehole at Site M0077 into the crater's peak ring. Excellent quality cores were recovered from ~ 505 to ~1335m below seafloor (m b.s.f.), and high-resolution open hole logs were acquired between the surface and total drill depth. Downhole logs are used to image the borehole wall, measure the physical properties of rocks that surround the borehole, and assess borehole quality during drilling and coring operations. When making geological interpretations of downhole logs, it is essential to be able to distinguish between features that are geological and those that are operation-related. During Expedition 364 some drilling-induced and logging-related features were observed and include the following: effects caused by the presence of casing and metal debris in the hole, logging-tool eccentering, drilling-induced corkscrew shape of the hole, possible re-magnetization of low-coercivity grains within sedimentary rocks, markings on the borehole wall, and drilling-induced changes in the borehole diameter and trajectory

    Student engagement and perceptions of blended-learning of a clinical module in a veterinary degree program.

    Get PDF
    Blended learning has received much interest in higher education as a way to increase learning efficiency and effectiveness. By combining face-to-face teaching with technology-enhanced learning through online resources, students can manage their own learning. Blended methods are of particular interest in professional degree programs such as veterinary medicine in which students need the flexibility to undertake intra- and extramural activities to develop the range of competencies required to achieve professional qualification. Yet how veterinary students engage with blended learning activities and whether they perceive the approach as beneficial is unclear. We evaluated blended learning through review of student feedback on a 4-week clinical module in a veterinary degree program. The module combined face-to-face sessions with online resources. Feedback was collected by means of a structured online questionnaire at the end of the module and log data collected as part of a routine teaching audit. The features of blended learning that support and detract from students’ learning experience were explored using quantitative and qualitative methods. Students perceived a benefit from aspects of face-to-face teaching and technology-enhanced learning resources. Face-to-face teaching was appreciated for practical activities, whereas online resources were considered effective for facilitating module organization and allowing flexible access to learning materials. The blended approach was particularly appreciated for clinical skills in which students valued a combination of visual resources and practical activities. Although we identified several limitations with online resources that need to be addressed when constructing blended courses, blended learning shows potential to enhance student-led learning in clinical courses

    Spinoza on Activity in Sense Perception

    Get PDF
    There can be little disagreement about whether ideas of sense perception are, for Spinoza, to be classed as passions or actions—the former is obviously the correct answer. All this, however, does not mean that sense perception would be, for Spinoza, completely passive. In this essay I argue argues that there is in the Ethics an elaborate—and to my knowledge previously unacknowledged—line of reasoning according to which sense perception of finite things never fails to contain a definite active component. This argument for activity in sense perception consists of two main parts: first, that ideas we form through sense perception have something adequate in them; second, that the adequate component is actively brought about. Discerning this line of thought connects to—and sheds some new light on—Spinoza’s general way of understanding ideas as entities involving activity

    Jury Systems Around the World

    Get PDF
    Lay citizens participate as decision makers in the legal systems of many countries. This review describes the different approaches that countries employ to integrate lay decision makers, contrasting in particular the use of juries composed of all citizens with mixed decision-making bodies of lay and law-trained judges. The review discusses research on the benefits and drawbacks of lay legal decision making as well as international support for the use of ordinary citizens as legal decision makers, with an eye to explaining a recent increase in new jury systems around the world. The review calls for more comparative work on diverse approaches to lay participation, examining how different methods of including lay participation promote or detract from fact finding, legal consciousness, civic engagement, and citizen power

    The Exopolysaccharide Matrix Modulates the Interaction between 3D Architecture and Virulence of a Mixed-Species Oral Biofilm

    Get PDF
    Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms
    • 

    corecore