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ProLuCID, a new algorithm for peptide identification using tandemmass spectrometry and protein sequence da-
tabases has been developed. This algorithm uses a three tier scoring scheme. First, a binomial probability is used
as a preliminary scoring scheme to select candidate peptides. The binomial probability scores generated by
ProLuCID minimize molecular weight bias and are independent of database size. A modified cross-correlation
score is calculated for each candidate peptide identified by the binomial probability. This cross-correlation scor-
ing function models the isotopic distributions of fragment ions of candidate peptides which ultimately results in
higher sensitivity and specificity than that obtained with the SEQUEST XCorr. Finally, ProLuCID uses the distribu-
tion of XCorr values for all of the selected candidate peptides to compute a Z score for the peptide hit with the
highest XCorr. The ProLuCID Z score combines the discriminative power of XCorr and DeltaCN, the standard pa-
rameters for assessing the quality of the peptide identification using SEQUEST, and displays significant improve-
ment in specificity over ProLuCID XCorr alone. ProLuCID is also able to take advantage of high resolution MS/MS
spectra leading to further improvements in specificitywhen compared to low resolution tandemMSdata. A com-
parison of filtered data searchedwith SEQUEST and ProLuCID using the same false discovery rate as estimated by
a target-decoy database strategy, shows that ProLuCID was able to identify as many as 25% more proteins than
SEQUEST. ProLuCID is implemented in Java and can be easily installed on a single computer or a computer cluster.
This article is part of a Special Issue entitled: Computational Proteomics.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent years, shotgun proteomics [1,2] has emerged as a robust
and sensitivemethod for identifying and quantifying proteins in a com-
plex biological sample and is now a preferred method for large-scale
proteomic analyses [3,4]. The strategy is based on proteolytic digestion
of complex protein mixtures into peptides followed by identification
of the peptides using tandem mass spectrometry (MS/MS). Peptide
identifications can be used to identify their corresponding proteins
using an automated database search. Recent improvements in MS tech-
nologies allow the acquisition of hundreds of thousands ofMS/MS spec-
tra over the course of one LC/MS/MS analysis [5–7], and a large-scale
shotgun proteomics project typically generates hundreds of millions
of MS/MS spectra. Each of these spectra has to be correlated with the
amino acid sequence of a peptide and corresponding protein. The
ational Proteomics.

. This is an open access article under
sensitivity and efficiency of the database search program used is of crit-
ical importance in any high-throughput protein identification
experiment.

There are five basic types of algorithms used to assign tandemmass
spectra to peptide sequences: (1) cross-correlationmethods that corre-
late experimental spectra with theoretical spectra [8–10], (2) methods
using unambiguous “peptide sequence tags” derived from spectra that
are used to search known sequences [11–15] (3) peptide de novo
sequencing [16–24], (4) probability-based matching that calculates a
score based on the statistical significance of a match between an ob-
served peptide fragment and those calculated from a sequence library
[25–32] and (5) blind or unrestricted modification search and spectra
alignment-based algorithms [21,33–37]. Cross-correlation approaches
and probability-basedmatching approaches are the twomost common-
ly used database searching strategies in large scale shotgun proteomics
experiments. Among these algorithms, SEQUEST [8] andMascot [25] are
the twomostwidely used database search engines. Studies have shown
that cross-correlation-based intensity-modeling methods have higher
sensitivity while probability-based methods have higher specificity
[32,38].
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The advent and commercialization of the high-performance mass
spectrometer enables routine, wide-spread high resolution high mass
accuracy measurements of peptides in proteomics [39]. Early studies
using this hybrid instrument have demonstrated a number of advan-
tages including high mass accuracy, high resolution, large space charge
capacity, and high dynamic range [5,40]. Venable et al., evaluated the
use of the LTQ-Orbitrap for the quantification of stable isotope-labeled
peptides and showed a 4–5 fold improvement in the number and qual-
ity of the peptide ratio measurements compared with similar analyses
done on the LTQ [41]. In addition, the high mass accuracy generated
by the LTQ-Orbitrap hybrid mass spectrometer can be used to improve
the confidence of peptide identification and database search speed. One
strategy for doing this is to obtain high mass resolution data for all pre-
cursor ions during the full MS scan in the Orbitrap mass analyzer and
then collect low resolution MS/MS spectra on those precursor peptides
in the linear ion trap. An alternative approach that takes advantage of
the LTQ-Orbitrap is to collect both high resolution MS andMS/MS spec-
tra in the Orbitrap mass analyzer for peptide identification.

Some database search programs utilize a two-step scoring scheme.
The first step is a preliminary scoring (Sp) step that is used to select a
fixed number of candidate peptides which are then analyzed using a
more sophisticated second step of scoring. This Sp step is important for
the speed of the identification process since the final scoring algorithms
are usually slower,making them impractical for scoring every candidate
sequence. One common method for Sp scoring is to use the number of
shared peaks to select thefinal candidates. This is done bymultiple algo-
rithms, including the hypergeometric probability based PEP_PROBE
[29], OMSSA [31] and the central limit theorem based PEP_PROBE
[32]. However, the “number of shared peaks” approach may not work
well for a low quality spectrum, especially when the fragmentation is
poor. Alternatively, the preliminary score (Sp) of SEQUEST is an empiri-
cally derived score that restricts the number of sequences analyzed in
the correlation analysis. Sp sums the peak intensity of fragment ions
matching the predicted sequence ions and accounts for the continuity
of an ion series and the length of a peptide. The original score is:

Sp ¼
X
k

Ik

 !
m 1þ βð Þ 1þ ρð Þ=L ð1Þ

where the first term in the product is the sum of ion abundances of all
matched peaks,m is the number ofmatches,β is a ‘reward’ for each con-
secutive match of an ion series (for example, 0.075), ρ is a ‘reward’ for
the presence of an immonium ion (for example 0.15) and L is the num-
ber of all theoretical ions of an amino acid sequence. The final scoring
uses one of the following two methods to measure closeness of fit be-
tween spectra and peptide sequences: the first method uses a shared
peak model to generate a quantitative measure of the fit, while the sec-
ondmethod uses fragment ion frequency to generate the probability the
sequence and spectrum are the best fit [32]. Because the final scoring is
usually more sophisticated and sensitive than the preliminary scoring,
the final scoring method would ideally be applied to each candidate
peptide rather than a limited number of them.

It is well known that the results of an unfiltered database search in-
clude a large number of false positive identifications from random hits
to the database. Post-database search filtering programs, such as
DTASelect [42,43], PeptideProphet, [44] and Search Engine Processor
[45] are essential for the optimal separation of true peptide/protein
hits from randomhits. For a peptide to be successfully identified by a da-
tabase search algorithm, it has to pass the following three tests: (1) it
must be ranked high enough in the Sp scoring to be selected for the
final scoring, (2) it must be assigned the top rank during the final scor-
ing, and (3) its score or scores have to be high enough to pass the post-
search filtering criteria [46]. Themajor challenge to improvement of the
overall performance of a database search algorithm is how to increase
the sensitivity of searches while maintaining adequate discrimination
between correct answers and false positives.

In this paper, we present ProLuCID, an MS/MS-based database
search program with enhanced peptide identification sensitivity and
specificity relative to SEQUEST. ProLuCID uses a three tiered scoring
scheme to maximize the sensitivity of database searching. For its Sp
scoring method, ProLuCID computes a binomial probability score for
each candidate peptide with a calculatedmass that matches a precursor
mass within a user specified tolerance. Then, based on the binomial
probability scores, it selects a user-specified number of candidate pep-
tides for final scoring (default = 500) that are least likely to be random
hits. For each candidate peptide selected for further analysis, ProLuCID
calculates a modified cross-correlation score (XCorr) and then further
generates another score (Z score) based on the distribution of the
XCorr of all final candidate peptides for that spectra. This three-tiered
scoring scheme gives ProLuCID significantly higher sensitivity and spec-
ificity than SEQUEST. Here we show that for low mass accuracy MS/MS
data, the cross-correlation-based Z score outperforms the binomial
probability score in making correct spectral assignments, while the bi-
nomial probability score performs better with high mass accuracy tan-
demmass spectra MS/MS data.

The ProLuCID software and data used in this paper can be
downloaded at http://fields.scripps.edu/downloads.php and http://
fields.scripps.edu/published/ProLuCID respectively.

2. Experimental section

2.1. Sample preparation

A variety of samples and instrument platformswere used to demon-
strate the improvement in identification, regardless of sample complex-
ity or instrument sensitivity. Samples of varying degrees of complexity
were used in this study: amixture of 17 known proteins, a human saliva
sample, rat brain sample, human cell lysate, and a protein fractionated
human cell lysate. The 17 protein mixture sample was used to assess
the sensitivity and the specificity of ProLuCID and SEQUEST scores,
while the other more complex samples were used to demonstrate the
sensitivity improvement in protein identificationwith samples ofmedi-
um to high complexity.

2.2. HEK 293 cells

Standard HEK293 cell lysate was prepared from HEK cells grown in
Dulbecco's modified Eagle's medium (D-MEM) with 10% fetal bovine
serum (FBS) supplemented with penicillin and streptomycin. Cells
were grown (37 °C/5% CO2) to approximately 80% confluence in tissue
culture flasks. Cells werewashed twicewith DPBS, scrapped from flasks,
supplemented with protease inhibitor cocktail (Roche) and lysed by
sonication. Protein concentration was determined by BCA assay.
Standard samples were kept at−80 °C until use.

2.3. Protein fractionation

HEK lysatewas submitted toprotein based fractionationby addition of
organic solvent into ten protein fractions, effectively reducing the sample
complexity. Protein pellets were washed with acetone and digested with
trypsin. Dried pellets were dissolved in 8 M urea/100 mM Tris, pH 8.5.
Proteinswere reducedwith 5mM tris(2-carboxyethyl)phosphine hydro-
chloride (TCEP, Sigma-Aldrich) and alkylatedwith 10mM iodoacetamide
(Sigma-Aldrich). Proteins were digested overnight at 37 °C in 2 M urea/
100 mM Tris, pH 8.5, 1 mM CaCl2 with trypsin (Promega) in a ratio of
1:100 (enzyme:protein). Digestion was stopped with formic acid, 5%
final concentration. Debris was removed by centrifugation.

For the saliva and the rat brain samples, about 200 micrograms of
proteins were solublized with 8 M urea/Invitrosol (Invitrogen, Calsbad,
CA), reduced with 10 mM dithiothreitol, alkylated with 10 mM
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Fig. 1. Distribution of number of fragment ion matched to a tandem mass spectrum of all
candidate peptides in (blue line) a protein database. The protein FASTA database contains
amino acid sequences of the 17 proteins, all Pombe proteins and the reverse copy of each
protein (10,006 entries in total). The fit curve (pink line) is a binomial distribution B (22,
0.1391).
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iodoacetomide, diluted with 4 volumes of 100 mM Tris–HCl, and then
digested with trypsin overnight. After digestion, the pH was adjusted
to ~2.5 using 90% formic acid. Sixty micrograms of protein digest from
each sample was analyzed by MudPIT.

2.4. Multidimensional protein identification technology

Digested proteins were pressure-loaded onto a fused silica capillary
column packed with 3 cm of 5-μm Partisphere strong cation exchanger
(SCX, Whatman, Clifton, NJ) and 3 cm of 5-μm Aqua C18 material (RP,
Phenomenex, Ventura, CA)with a 2 μm filtered union (UpChurch Scien-
tific, OakHarbor,WA) attached to the SCX end. The columnwaswashed
with buffer containing 95% water, 5% acetonitrile, and 0.1% formic acid.
After desalting, a 100-μm i.d. capillary with a 5-μm pulled tip packed
with 10 cm 3-μm Aqua C18 material was attached to the filter union,
and the entire split-column was placed inline with an Agilent 1100
quaternary HPLC (Agilent, Palo Alto, CA) and analyzed using a modified
12-step separation procedure described previously [2]. Three buffer
solutionwere used: 5% acetonitrile/0.1% formic acid (buffer A); 80% ace-
tonitrile/0.1% formic acid (buffer B), and 500 mM ammonium acetate/
5% acetonitrile/0.1% formic acid (buffer C). The first step consisted of a
100 min gradient from 0 to 100% buffer B, steps 2–11 had the following
profile: 3 min of 100% buffer A, 5 min of X% buffer C, a 100 min gradient
from 15 to 45% buffer B. The 5 min buffer C percentages (X) were 5, 10,
15, 20, 25, 30, 35, 40, 55, and 75%, respectively, for steps 2–11. In the
final step, the gradient contained 3 min of 100% buffer a, 20 min of
100% buffer C, a 10 min gradient from 0 to 15% buffer B, and a
107 min gradient from 15 to 100% buffer B. As peptides were eluted
from the microcapillary column, they were electrosprayed directly
into an LTQ or LTQ-Orbitrap mass spectrometer (Thermo-Fisher, Palo
Alto, CA) with the application of a distal 2.4-kV spray voltage. A cycle
of one full scan mass spectrum (400–1400 m/z) followed by 8 data de-
pendent MS/MS spectra at a 35% normalized collision energy was re-
peated continuously throughout each step of the multidimensional
separation.

2.5. Database search

The data for the 17 proteinmix, the human saliva sample and the rat
brain samplewere searched against a databasewith sequences of the 17
proteins added to a Schizosaccharomyces pombe protein FASTA database
(http://www.sanger.ac.uk/Projects/S_pombe/protein_download.shtml,
release date of March 3, 2005), the IPI human protein FASTA database
(version 3.06 release date of May 10, 2005), and the IPI rat protein
FASTA database (version 3.08 release date of July 12, 2005), respectively.
Each protein database was concatenated with reversed sequences of all
the proteins to estimate false positive rate. ProLuCID database searches
were performed with precursor ion mass tolerance of 3 amu for low ac-
curacy data or between 5 and 50 ppm for FTMS data, while fragment ion
mass tolerances were 0.4 amu for low-resolution data and 30 ppm for
calculation of the high resolution probability score calculated for
FT-MS/MS data. All searches considered a static modification of
57.0215 on cysteine due to carboxyamidomethylation. The database
search was not restricted by enzymatic specificity. Each dataset was
searched twice, once with SEQUEST and once with ProLuCID, and the
search results were directly compared. Similar database searches
(precursor ion mass tolerance 3 amu and no enzyme restriction) were
donewith SEQUEST, MASCOT, XTANDEM, and OMSSA on the 17 protein
mix dataset for sensitivity and specificity comparison. The raw andproc-
essed datasets are available at http://fields.scripps.edu/published/
ProLuCID/.

2.6. Theory

ProLuCID utilizes a three tiered scoring scheme. It first selects candi-
date peptides (500 by default) for final scoring based on a binomial
probability score. This binomial probability score is computed for each
peptide in the protein database that has a calculated mass within the
precursor mass ± user-defined mass tolerance. It then computes an
XCorr and a Z score for each candidate peptide that is selected for final
scoring. Previous studies have shown that the distribution of matching
fragment ions between a set of candidate peptides and an experimental
spectrum can be approximated by a Poisson distribution [20,29,31]. As
shown in Fig. 1, the number of fragment ions that match an experimen-
tal spectrumalsofits a binomial distribution verywell. The binomial dis-
tribution is the discrete probability distribution of the number of
successes in a sequence of n independent yes/no experiments, each of
which yields success with probability (p). Such a success/failure exper-
iment is also called a Bernoulli experiment or Bernoulli trial.We consid-
er the testing of each theoretical peak as a Bernoulli trial and compute
the probability of a peptide with at least m random matches with the
formula (1):

P x N ¼ mð Þ ¼
Xn
k¼m

P x ¼ kð Þ where p x ¼ kð Þ ¼ n!
k! n−kð Þ!p

k 1−pð Þ n−kð Þ

ð1Þ

where n is the number of theoretical peaks of the candidate peptide
tested, which is determined by the peptide length together with the
minimum and maximumm/z in the spectrum;m is the number of the-
oretical peaks that match to a peak in the experimental spectrum and is
guaranteed not greater than n; p is the probability that any fragment ion
matches a peak in the spectrum, as determined by the mass tolerance
for a fragment ion match and the density and distribution of peaks in
the experimental spectrum. The binomial probability score P(x N= m)
is the probability of getting m or more matches when n theoretical
peaks are tested. By design, the binomial probability score computed
by ProLuCID is database independent and is solely dependent on char-
acteristics of the spectrum and the peptide sequence.

The second ProLuCID score is referred to as XCorr and is very similar
to the SEQUEST XCorr. It is a cross-correlation of the experimental and
theoretical spectra.

Corr E; Tð Þ ¼
X

Xiyi þ τ

The correlation is processed and averaged to remove the periodic
noise in the interval (−75 to 75). Unlike the SEQUEST cross-
correlation procedure which assigns an intensity of 50 to the monoiso-
topic peak of each major peak series and an intensity of 25 to a window
of 1 amu around themajor peak, ProLuCID uses averagine [47] to model
the isotopic distribution of each major ion peak based on it mass. Based
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Fig. 2. Number of correct spectrum assignments by ProLuCID and SEQUEST XCorr and Sp
scores. BC for both XCorr rank and Sp rank are correct; XC for XCorr rank is correct and Sp
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the reverse sequences of the 17 proteins. These results are based on a 6-step MudPIT
with 75,866 spectra. The ProLuCID XCorr outperforms SEQUEST XCorr in terms of number
of correct spectrum assignments (7299 vs 6974); The ProLuCID Sp scores (binomial
probability score) work better than SEQUEST Sp scores (6353 vs 5338); and ProLuCID
XCorr gives more true hits the top rank than ProLuCID Sp (7299 vs 6353).
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on the averagine table, any isotopic peaks within the isotopic envelope
that have at least 20% of the intensity of the base peak (i.e., the most in-
tense peak) are assigned an intensity that is proportional to their theo-
retical intensity. In order to keep the ProLuCID XCorr comparable to the
SEQUEST XCorr, we assign the intensity of the base peak in the isotopic
envelope of each major fragment ion to 50 and the intensity of each
minor peak (i.e., a ion, z ion, b loss of H2O, b loss of NH3 for CID spectra)
to 10 as is done in SEQUEST.

In addition to the preliminary score and XCorr, ProLuCID computes a
third score (Z score) for eachfinal candidate peptide. For each spectrum,
there should only be one correct answer and all the other candidate
peptides are considered random hits. We have found that the distribu-
tion of XCorr's for the top 500 peptide hits to each spectrum is very
close to a normal distribution with the true hit being an obvious outlier
and statistically significantly different from the other final candidates.
There are many ways to detect outliers from normal distributions and
the Z score of Grubbs' test [48] is themethod implemented in ProLuCID.
The Z score is calculated as the difference between the outlier and the
mean divided by the standard deviation SD (Eq. (2)). A large Z score
means that the XCorr of the top hit is significantly different from the
other hits and the peptide is more likely to be a true hit.

Z ¼ X−μ
SD

where SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi−μð Þ2

n−1

vuuut
ð2Þ

X is the XCorr of the top hit, μ is the mean XCorr of all the final
candidate peptides and n is the number of final candidate peptides.

3. Results and discussion

3.1. Overview of ProLuCID

We have developed ProLuCID, a new database search algorithm for
peptide identification that is highly flexible, efficient, and sensitive.
ProLuCID is implemented in Java 1.6 and can be run on either a single
CPU or multi-node computing cluster with 1.6 or later version Java.
With Java multithreading technology, ProLuCID users can specify
number of compute cores to be used to take advantage of multi-core ar-
chitectures that come with most modern computers. It is can be used
with protein FASTA databases or pre-processed databases for faster
search speed. ProLuCID is also able to perform efficient and flexible dif-
ferential modification searches and is capable of taking advantage of the
highmass accuracy data generated by the latest instrumentation. These
features of ProLuCID are described in greater detail below.

3.2. Using binomial probability as preliminary score (Sp) to
improve sensitivity

The goal of a tandemmass spectral database search is to identify the
best peptide sequence match for a spectrum. The ProLuCID algorithm
uses a three-tiered scoring scheme to assess the quality of a match
between a spectrum and a peptide amino acid sequence from a protein
database. First, ProLuCID uses a binomial probability score (Sp) to distin-
guish random matches and select peptide candidates for final cross-
correlation scoring. Although the cross-correlation score provides
higher sensitivity than the binomial probability score, it is computation-
ally expensive (i.e., slow) and thus not practical for use in the initial
scoring scheme. Instead, we select a user-defined number (500 by de-
fault) of candidate peptides forfinal scoring based on binomial probabil-
ity scores. It is worth noting that the computation of exact binomial
probability score is also a very slow process due to the computation of
the factorials and exponentiations (see Eq. (1)), thus ProLuCID uses an
approximation method to compute the scores. A lookup table is calcu-
lated when the program starts and the approximate probability score
can be retrieved based on the number of matched peaks, the number
of peaks tried and the fraction of the region from the minimum m/z to
maximum m/z in the tandem mass spectrum that are considered
positive (the p in Eq. (1)). In order to use the lookup table, the value
of p is rounded and keeps only two significant digits so we can map
any p to an integer between 1 and 100. This approximation also
makes it feasible for ProLuCID to use the binomial probability score as
a preliminary scoring method used for all candidate peptides within a
givenmass tolerance rather than just a final list of 100–200 peptide can-
didates as is done in other database search programs. The advantage of
using a more sophisticated scoring function as the preliminary scoring
routine can be seen in Fig. 2. Based on the 17 protein mix dataset, the
SEQUEST Sp score gives 5338 correct spectrum assignments the while
ProLuCID binomial probability score gives 6353 correct spectrum
assignments. Based on this result, we can conclude that the approxi-
mate binomial probability score displays better sensitivity than
SEQUEST Sp score.

3.3. Matching the isotopic distribution of fragment ions

The second score generated by ProLuCID is a measure of cross-
correlation between the experimental and theoretical spectra for a
peptide and is referred to as XCorr. In SEQUEST, a theoretical spectrum
is generated from predicted fragment ions for each peptide sequence
(b- and y-ions for CID and c- and z-ions for ETD). In the theoretical spec-
trum, the main ion series products are assigned an abundance of 50, a
window of 1 amu around the main fragment is assigned an intensity
of 25, and water and ammonia losses are assigned an intensity of 10.
The theoretical and normalized experimental spectra are then cross-
correlated to obtain similarities between the spectra. In contrast to
SEQUEST, ProLuCID models the isotope distribution of each fragment
ion in order to generate a more realistic theoretical spectrum for
cross-correlation. Theoretical isotopic abundance distributions for pro-
teins and peptides were created using a look-up table of 150 averagine
theoretical isotopic distributions with monoisotopic mass values for
multiples of 500 Da up to 75,000 Da with all abundance distributions
in the look-up table created by Mercury [47]. ProLuCID uses the
averagine table to closely model the isotopic distribution of the frag-
ment ions. This modification makes the distribution of ProLuCID XCorr
of decoy hits closer to a normal distribution, and the score itself
becomes more discriminative (Fig. 3). Importantly, the benefits of
modeling the isotope distribution are realized even for low-resolution
LTQ data in which the charge states cannot be determined.

Since ProLuCID can be configured to output both the binomial prob-
ability score and XCorr for each candidate peptide, we can determine
which score is more sensitive in identifying target peptides by compar-
ing the number of true peptides (from the 17 protein mix) that are
ranked as the top hit by each scoring scheme. From Fig. 2, we can see



Fig. 3.Histogramof SEQUEST and ProLuCIDXCorr scores, separated into true hits and reverse hits, showing that theXCorr scores generated by ProLuCID aremore discriminative than those
generated by SEQUEST, because ProLuCID closely models fragment ion isotopic distributions.
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that XCorr performs better than preliminary scoring using either the
ProLuCID binomial probability score or the SEQUEST Sp score. The
ProLuCIDXCorr identifiesmore spectra correctly than the ProLuCID's bi-
nomial probability score (7299 vs 6353) while the ProLuCID probability
score getsmore correct spectral assignments than the SEQUEST Sp score
(6353 vs 5201). Based on these results, we can conclude that ProLuCID's
binomial probability is a better score than SEQUEST's Sp score, and
ProLuCID's XCorr is a better score than ProLuCID's binomial probability
score. The combination of binomial probability preliminary scoring and
the modeling of the isotopic distribution of fragment ions make
ProLuCIDmore sensitive than SEQUEST in terms of correct spectrum as-
signments (7299 vs 6974), regardless of the specificity of the scores.

3.4. Statistical Z score improves the specificity

In addition to the binomial probability and cross-correlation scores,
ProLuCID outputs a Z score for each peptide hit. The Z score is a
Fig. 4. ROC curves of ProLuCID and SEQUEST scores. A. Typical ROC curves of SEQUEST XCorr, Pr
as a function of false positive rate. C. Plots of number of true hits against false positive fraction
against false positive fraction of ProLuCID high mass accuracy probability score, low mass accu
dimensionless score derived by subtracting the population mean from
an individual raw score and then dividing the difference by the popula-
tion standard deviation. It reveals howmany units of the standard devi-
ation a case is above or below the mean. Unlike XCorr, which is
independent of database size and reflects the quality of the match be-
tween the experimental spectrum and the peptide sequence, the
ProLuCID's Z score is database-dependent and reflects the quality of
the match relative to near misses. A higher Z score indicates that the
peptide hit is more likely to be a correct match to the spectrum.

Traditionally, filtering of database search results by DTASelect used
threshold cutoffs for XCorr and DeltaCN, where DeltaCN is the differ-
ence between the top hit XCorr and the second best hit XCorr divided
by the XCorr of the top hit. In the latest version of DTASelect
(DTASelect2) [43], these two measurements are combined using a dis-
criminant function that dynamically sets the XCorr and DeltaCN values
in order to achieve a user-specified false discovery rate. For either
case, high confidence spectrum assignments generally have both high
oLuCID XCorr and ProLuCID Z score. B. Modified ROC curves, showing true positive fraction
of SEQUEST XCorr, ProLuCID XCorr and ProLuCID Z score. D. Plots of number of true hits
racy probability score and Z score.



Fig. 6. Plot of ProLuCID Z score as a function of false positive rate on the 17 protein
mixture dataset.
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XCorr and high DeltaCN scores. Since the XCorr shows positive correla-
tion across charge states (i.e. XCorr values increase for higher charge
state spectra) [49], different cutoffs are usually applied to assignments
with different charge states. DeltaCN measures the difference between
the best hit and the second best hit and has proven to be a very good
measure for separating true hits from false. However, in some cases
the sequence corresponding to the second highest XCorr might have
very high sequence similarity to the top hit, making the DeltaCN value
very small. Thus, even though the identification itself may be reliable,
it would be discarded by DTASelect due to its similarity to the 2nd
best hit. Tang et al. [34] used the distance score which is defined as
the difference between the highest score and the seventh highest
score for each MS/MS spectrum. The distance score provides a measure
of the separation between the highest scoring peptide and the pack of
wrong peptides. The larger the distance score, the larger the probability
that the highest scoring peptide is indeed a legitimate answer. The dis-
tributions of distance scores for correct peptides and incorrect peptides
were found to be approximately Poisson. ProLuCID's Z score provides a
statistical measurement to indicate how significant the difference be-
tween the best match and the rest of thematches to the same spectrum
are. This measure provides an effective way of distinguishing the true
hits from the random hits using a strong statistical foundation.

A common method for visualizing and comparing discrimination
ability is the receiver operating characteristic (ROC) plot, [50] in
which one can read the false positive level that must be tolerated in
order to obtain any given true positive level. In our case, we consider
any identification that matches a peptide sequence from any of the 17
proteins as a true positive, and any identification thatmatches a peptide
sequence from a reversed protein as a false positive. The ROC curves in
Fig. 4A–C clearly illustrate the improvement in sensitivity and specificity
of the ProLuCID XCorr and Z score compared with the SEQUEST XCorr.
Fig. 4A is a typical ROC curve with the area under the curve being
0.89, 0.91 and 0.96 for the SEQUEST XCorr, ProLuCID XCorr and
ProLuCID Z score, respectively. Based on these result, we can conclude
that ProLuCID XCorr is a more discriminative score than SEQUEST
XCorr and that the ProLuCID Z score shows significantly improved spec-
ificity over both SEQUEST and ProLuCID XCorr. Fig. 4C is a modified ROC
curve that plots the number of true hits against the false positive faction.
These figures clearly show that ProLuCID XCorr and Z score have better
sensitivity and specificity than SEQUEST XCorr and that the ProLuCID Z
score shows better specificity than ProLuCID XCorr. We implemented Z
score in SEQUEST and it show significant better specificity than
SEQUEST XCorr (Fig. 4).

It is also worth noting that the ProLuCID Z score distributions for
charge+2 and charge+3 decoy hits as shown in Fig. 5 are very similar,
indicating that the ProLuCID Z score is largely charge state independent.
Fig. 5. Histograms of ProLuCID Z scores of the true hits and decoy hits, showing good
separation between the true hits and decoy hits, and that the distributions of the Z scores
of the decoy hits of charge +2 and charge + 3 spectra are very similar.
It is important for practical applications to know the true and false
positive rates at given score thresholds. Fig. 6 plots the false positive
rate against ProLuCID Z scores. In this dataset, the spectrum assignment
false positive rate is 10% at Z score 4.42, 5% at Z score 4.67 and 1% at
Z score 5.28, respectively. Although the distribution of ProLuCID Z scores
shows relatively small variation between differentMudPIT runs, it is still
dataset dependent to some degree.

3.5. Performance test with biological samples of medium and
high complexity

In order to test the performance of ProLuCID on data from more
complex samples, we performed 12-step MudPIT experiments with a
human salivary sample and a rat brain whole cell lysate sample.
Human saliva is a biological fluid with a medium level of complexity.
In a large scale saliva protein cataloging project that combined results
from over 200 MudPIT experiments, we previously identified about
1500 proteins with high confidence (b=1% false positive rate). With a
single 12-step MudPIT experiment using LTQ-Orbitrap, we identified
372 proteins with ProLuCID and 300 proteins with SEQUEST using the
same DTASelect filtering criteria (at least two peptides per protein,
each peptide has at least one tryptic terminus and 5% spectrum level
false positive rate). From the results in Table 1, we find that ProLuCID
identifies more proteins than SEQUEST at similar false positive rate.
On themore complex sample of rat brainwhole cell lysate, we identified
about 3345 proteins with ProLuCID compared with 2991 with SEQUEST
(Table 2), with false positive rates of 1.23% and 1.44% respectively. Thus,
the improvements on the scoring methods used in ProLuCID versus
SEQUEST leads to higher confidence in protein identifications. In
Table 3, we show that ProLuCID results show higher sequence coverage,
peptide counts and spectrum counts than SEQUEST results.

3.6. Comparison with Comet and SEQUEST on Hela sample

We compared ProLuCIDwith Comet and SEQUEST by searching trip-
licate data from a Hela sample. The tandemmass spectra were searched
against UniProt human database (downloaded on November 08, 2010).
To estimate peptide probabilities and FDRs accurately, we used a target/
decoy database containing the reversed sequences. The search space
included fully tryptic peptide candidates that fell within themass toler-
ance window with maximum three internal miscleavage constraints.
Table 1
Number of protein identified in the saliva sample with SEQUEST and ProLuCID after
DTASelect filtering.

Search program Forward hits Decoy hits False positive rate

SEQUEST 300 7 2.33%
ProLuCID 372 7 1.89%



Table 4
Search result comparison of ProLuCID, SEQUEST, and Comet. Triplicates of Hela sample
were searched against the same protein database. Search results were filtered with the
same DTASelect parameters. The results were averaged from triplicates.

Algorithm Protein count Peptide count Spectrum count

SEQUEST 3798 28,075 48,217
Comet 3921 29,810 51,202
ProLuCID 3973 31,165 53,797

Table 2
Number of proteins identified in the rat brain sample with SEQUEST and ProLuCID after
DTASelect filtering.

Search program and filter options Forward hits Decoy hits False positive rate

SEQUEST_XD 2991 43 1.44%
ProLuCID_XD 3330 51 1.53%
ProLuCID_Z 3345 41 1.23%

A twelve step MudPIT dataset with 139,277 spectra was searched with SEQUEST and
ProLuCID respectively and DTASelect2 was used to get the final protein lists. SEQUEST_XD
for SEQUEST search and XCorr and DeltaCN for DTASelect filtering; ProLuCID_XD for
ProLuCID search with XCorr and DeltaCN for DTASelect2 filtering; ProLuCID_Z for
ProLuCID search and Z score only for DTASelect filtering (with additional –noxc –
nodcn –sp options). DTASelect2 options –p 2 –y 1 –fp 0.05 were used for all three, and
additional options (−noxc –nodcn –sp) for ProLuCID_Z to use Z score only for filtering.
A protein was considered identified if it has at least two peptides that pass the 5% PSM
(peptide-spectrum-match) false positive rate filter and each peptide has at least one
tryptical terminus.
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Carbamidomethylation (+57.02146 Da) of cysteine was considered
as a static modification. The validity of peptide/spectrum matches
(PSMs) was assessed in DTASelect, using spectrum level FDR less than
1% and precursor delta mass threshold of 10 ppm.

Table 4 shows that ProLuCID identified more proteins than both
SEQUEST and Comet based on all protein, peptide and spectrum average
counts from triplicates. ProLuCID identified 12% more spectra than
SEQUEST, and 5% more than Comet.

We also compared ProLuCID and Comet with half-tryptic (consider-
ing candidate peptides with at least one tryptic end) parameter
(Table 5). Comparing to fully tryptic search, the ProLuCID identified
more spectra than Comet by even bigger difference. ProLuCID identified
20% more spectra and 19% more peptides than the Comet.

3.7. High Resolution MS and MS/MS database searches

The LTQ-Orbitrap hybrid mass spectrometer combines high resolu-
tion andmass accuracywith fast scan rates and theflexibility of two dif-
ferent mass analyzers which provides the user with the opportunity to
operate the instrument in different modes. One mode uses the Orbitrap
mass analyzer to collect all spectra for an experiment, including both
high resolution full MS scans of precursor ions and high resolution tan-
demmass spectra after peptide fragmentation. Themajor advantages of
this approach are the highmass accuracy of the precursor ion which re-
stricts the number of candidate peptides that need to be considered by
the database search algorithm, and the high mass accuracy of the frag-
ment ions which could to lead to more confident peptide and protein
identifications, as well as PTM localization. The disadvantage of this
strategy, however, is the lower scan rate of the Orbitrap compared
with the LTQ, which would result in the collection of fewer tandem
mass spectra and likely fewer peptide and protein identifications. Alter-
natively, the LTQ-Orbitrap can be used so that the full MS scans are col-
lected by the Orbitrap while the LTQ is used to obtain low resolution
MS/MS spectra. In this approach, highmass accuracy is obtained for pre-
cursor ions while low mass accuracy is obtained for fragment ions. The
advantage of this mode is that the high precursor mass accuracy can be
used to reduce the false positive rate and/or speed up database search
while a large number of tandem mass spectra are collected by the
LTQ. Importantly, ProLuCID is capable of handling all of these possibili-
ties and can search spectra with either high or low mass accuracy for
Table 3
Average number of peptide count, spectrum count and sequence coverage of 1000 pro-
teins with highest sequence coverage identified in the rat brain sample with SEQUEST
and ProLuCID after DTASelect2 filtering.

Algorithm Peptide count Spectrum count Sequence coverage

SEQUEST 7.53 29.95 22.79%
ProLuCID 8.50 39.67 24.65%
both precursor and fragment ions, including deisotoped and decharged
high-resolution MS/MS spectra [51].

ProLuCID allows the user to specify the precursor and fragment ion
mass tolerance from1 ppm to 1000 ppm.When high precursormass ac-
curacy is specified, ProLuCID can be configured to use a very narrow
precursor mass tolerance to reduce the number of candidate peptides
and thus speed up the search. In this case, however, themass spectrom-
eter may select and record the non-monoisotopic peaks (i.e., peptide
ions containing one or more 13C atoms) for MS/MS fragmentation
which can prevent these spectra from being identified when searches
are restricted to small m/z windows. To address this problem, ProLuCID
selects candidate peptides by assuming the precursor can be either the
M+ 0 (mono), M+ 1 (with one 13C) M+ 2 (with two 13C), etc., iso-
topic peak. The number of isotopic peaks considered by ProLuCID can be
specified by the user in the ProLuCID search parameter file. This ap-
proach significantly reduces the number of candidate peptides and
speeds up the database search without missing spectra obtained from
the fragmentation of non-monoisotopic peaks.

Additionally, ProLuCID can use a preprocessed database inwhich the
peptides are sorted by mass and can improve the computational effi-
ciency by more than 1000–2000% over SEQUEST if stringent precursor
mass tolerance (e.g., 5 ppm) is used. The search speed improvement
can be more dramatic for differential modification searches and largely
depends on the database size, precursormass tolerance, enzyme restric-
tion, etc.

Another advantage of high resolution full MS spectra is the ability
to correctly assign charge states to the precursor ions. For low
resolution data, the charge state of the precursor ions cannot easily
be determined for spectra with charge states higher than +1.
When the charge state of a multiply charged precursor ion cannot
be determined, the spectrum is typically searched against the
database twice, once assuming a +2 charge state and then again
assuming a +3 charge state. In this approach, spectra with charge
states higher than +3 are always incorrectly assigned. With high
resolution Orbitrap data, charge states can be assigned to over 90%
of MS/MS spectra using the in-house algorithm RawXtract. This
eliminates the need to guess the charge state of precursor ions and
enables peptides with charge states of +4 or higher to be identified
(Fig. 7). ProLuCID models +1 fragment ions for +1 and +2 spectra,
+1 and +2 fragment ions for +3 spectra, and fragment ions of
charge state from +1 to the floor of (z + 2)/2 for spectra with
precursor charge state +4 or higher, where z is the precursor charge
state.

For high resolution MS/MS data, ProLuCID allows users to specify
fragment ion mass tolerance in terms of parts-per-million (ppm,
e.g. 20 ppm). We collected high resolution tandem mass spectra in a
4-step MudPIT experiment with the 17 protein mix sample. The same
Table 5
Search result comparison of ProLuCID and Comet with half tryptic parameter.
Triplicates of Hela samplewere searched against the same protein database. Search results
were filteredwith sameDTASelect parameters. The results were averaged from triplicates.

Algorithm Protein count Peptide count Spectrum count

Comet 3940 28,400 48,008
ProLuCID 4124 33,710 57,569



Fig. 7. An example high precursor charge (+4) peptide spectrum identified by ProLuCID.
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set of tandemmass spectra were searched as high resolution data using
30 ppm fragmentmass tolerance and low resolution data using 0.4 amu
fragmentmass tolerance. From Fig. 4D, we can see that the ProLuCID bi-
nomial probability score for a high fragment mass accuracy search
shows better sensitivity and specificity than the binomial probability
score and the Z score for a low fragment mass accuracy search. It is
worth noting that the Z score is computed based on an XCorr with
low fragment ion mass accuracy.

ProLuCID takes a similar approach as SEQUEST for differential or var-
iable modification searches. Users need to specify the type of modifica-
tion and the maximum number of modifications to be considered.
However, unlike SEQUEST in which themaximum number of modifica-
tion types is set to 3 and each modification or mass shift can only occur
to a maximum 3 amino acid residues, ProLuCID allows users to specify
as many differential modification types as desired and each modifica-
tion type or mass shift can be applied to as many residues as expected
to be possible. This provides users the opportunity to search for unex-
pected modifications at a relatively low computational cost. Of course,
for any given protein database, search times will increase asmoremod-
ifications are considered.

4. Conclusions

ProLuCID achieves enhanced sensitivity and specificity by using a
binomial probability score as a preliminary score, an improved
XCorr, and the implementation of a novel Z score. ProLuCID Z score
shows significantly higher sensitivity and specificity than SEQUEST
XCorr. For high resolution (Orbitrap) MS/MS data, the ProLuCID
probability score outperforms Z score, while Z score performs better
than ProLuCID probability score for low mass accuracy (LTQ) MS/MS
data. We show for typical shotgun proteomics experiments, using
DTASelect with the same false positive rate filter, ProLuCID usually
identifies about 10%–25% more proteins than SEQUEST does. The
overall confidence of the identified proteins is improved due to sig-
nificant increases in peptide count, spectrum count and sequence
coverage.
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