376 research outputs found

    Responses of two scleractinian corals to cobalt pollution and ocean acidification

    Get PDF
    The effects of ocean acidification alone or in combination with warming on coral metabolism have been extensively investigated, whereas none of these studies consider that most coral reefs near shore are already impacted by other natural anthropogenic inputs such as metal pollution. It is likely that projected ocean acidification levels will aggravate coral reef health. We first investigated how ocean acidification interacts with one near shore locally abundant metal on the physiology of two major reef-building corals: Stylophora pistillata and Acropora muricata. Two pH levels (pH(T) 8.02; pCO(2) 366 mu atm and pH(T) 7.75; pCO(2) 1140 mu atm) and two cobalt concentrations (natural, 0.03 mu g L-1 and polluted, 0.2 mu g L-1) were tested during five weeks in aquaria. We found that, for both species, cobalt input decreased significantly their growth rates by 28% while it stimulated their photosystem II, with higher values of rETR(max) (relative Electron Transport Rate). Elevated pCO(2) levels acted differently on the coral rETR(max) values and did not affect their growth rates. No consistent interaction was found between pCO(2) levels and cobalt concentrations. We also measured in situ the effect of higher cobalt concentrations (1.06 +/- 0.16 mu g L-1) on A. muricata using benthic chamber experiments. At this elevated concentration, cobalt decreased simultaneously coral growth and photosynthetic rates, indicating that the toxic threshold for this pollutant has been reached for both host cells and zooxanthellae. Our results from both aquaria and in situ experiments, suggest that these coral species are not particularly sensitive to high pCO(2) conditions but they are to ecologically relevant cobalt concentrations. Our study reveals that some reefs may be yet subjected to deleterious pollution levels, and even if no interaction between pCO(2) levels and cobalt concentration has been found, it is likely that coral metabolism will be weakened if they are subjected to additional threats such as temperature increase, other heavy metals, and eutrophication

    IoT protocols, architectures, and applications

    Get PDF
    The proliferation of embedded systems, wireless technologies, and Internet protocols have made it possible for the Internet-of-things (IoT) to bridge the gap between the physical and the virtual world and thereby enabling monitoring and control of the physical environment by data processing systems. IoT refers to the inter-networking of everyday objects that are equipped with sensing, computing, and communication capabilities. These networks can collaborate to autonomously solve a variety of tasks. Due to the very diverse set of applications and application requirements, there is no single communication technology that is able to provide cost-effective and close to optimal performance in all scenarios. In this chapter, we report on research carried out on a selected number of IoT topics: low-power wide-area networks, in particular, LoRa and narrow-band IoT (NB-IoT); IP version 6 over IEEE 802.15.4 time-slotted channel hopping (6TiSCH); vehicular antenna design, integration, and processing; security aspects for vehicular networks; energy efficiency and harvesting for IoT systems; and software-defined networking/network functions virtualization for (SDN/NFV) IoT

    Scalable Aerobic Oxidation of Alcohols Using Catalytic DDQ/HNO3

    Get PDF
    A selective, practical, and scalable aerobic oxidation of alcohols is described that uses catalytic amounts of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and HNO3, with molecular oxygen serving as the terminal oxidant. The method was successfully applied to the oxidation of a wide range of benzylic, propargylic, and allylic alcohols, including two natural products, namely, carveol and podophyllotoxin. The conditions are also applicable to the selective oxidative deprotection of p-methoxybenzyl ethers

    Interpretation of porosity and LWD resistivity from the Nankai accretionary wedge in light of clay physicochemical properties: Evidence for erosion and local overpressuring

    Get PDF
    International audienceIn this study, we used porosity to assess the compaction state of the Nankai accretionary wedge sediments and any implications for stress and pore pressure. However, hydrous minerals affect porosity measurements, and accounting for them is essential toward defining the interstitial porosity truly representative of the compaction state. The water content of sediments was measured in core samples and estimated from logging data using a resistivity model for shale. We used the cation exchange capacity to correct the porosity data for the amount of water bound to clay minerals and to correct the porosity estimates for the surface conductivity of hydrous minerals. The results indicate that several apparent porosity anomalies are significantly reduced by this correction, implying that they are in part artifacts from hydrous minerals. The correction also improves the fit of porosity estimated from logging-while-drilling (LWD) resistivity data to porosity measured on cores. Low overall porosities at the toe of the accretionary wedge and in the splay fault area are best explained by erosion, and we estimated the quantity of sediments eroded within the splay fault area by comparing porosity-effective stress relationships of the sediments to a reference curve. Additionally, a comparison of LWD data with core data (resistivity and P wave velocity) obtained at Site C0001 landward of the mega-splay fault area, suggested a contribution from the fracture porosity to in situ properties on the formation

    Making Password Authenticated Key Exchange Suitable For Resource-Constrained Industrial Control Devices

    Get PDF
    Connectivity becomes increasingly important also for small embedded systems such as typically found in industrial control installations. More and more use-cases require secure remote user access increasingly incorporating handheld based human machine interfaces, using wireless links such as Bluetooth. Correspondingly secure operator authentication becomes of utmost importance. Unfortunately, often passwords with all their well-known pitfalls remain the only practical mechanism. We present an assessment of the security requirements for the industrial setting, illustrating that offline attacks on passwords-based authentication protocols should be considered a significant threat. Correspondingly use of a Password Authenticated Key Exchange protocol becomes desirable. We review the signif-icant challenges faced for implementations on resource-constrained devices. We explore the design space and shown how we succeeded in tailoring a partic-ular variant of the Password Authenticated Connection Establishment (PACE) protocol, such that acceptable user interface responsiveness was reached even for the constrained setting of an ARM Cortex-M0+ based Bluetooth low-energy transceiver running from a power budget of 1.5 mW without notable energy buffers for covering power peak transients

    Outcomes in newly diagnosed elderly glioblastoma patients after concomitant temozolomide administration and hypofractionated radiotherapy

    Get PDF
    This study aimed to analyze the treatment and outcomes of older glioblastoma patients. Forty-four patients older than 70 years of age were referred to the Paul Strauss Center for chemotherapy and radiotherapy. The median age was 75.5 years old (range: 70-84), and the patients included 18 females and 26 males. The median Karnofsky index (KI) was 70%. The Charlson indices varied from 4 to 6. All of the patients underwent surgery. O6-methylguanine-DNA methyltransferase (MGMT) methylation status was determined in 25 patients. All of the patients received radiation therapy. Thirty-eight patients adhered to a hypofractionated radiation therapy schedule and six patients to a normofractionated schedule. Neoadjuvant, concomitant and adjuvant chemotherapy regimens were administered to 12, 35 and 20 patients, respectively. At the time of this analysis, 41 patients had died. The median time to relapse was 6.7 months. Twenty-nine patients relapsed, and 10 patients received chemotherapy upon relapse. The median overall survival (OS) was 7.2 months and the one- and two-year OS rates were 32% and 12%, respectively. In a multivariate analysis, only the Karnofsky index was a prognostic factor. Hypofractionated radiotherapy and chemotherapy with temozolomide are feasible and acceptably tolerated in older patients. However, relevant prognostic factors are needed to optimize treatment proposals

    Statistical Ineffective Fault Attacks on Masked AES with Fault Countermeasures

    Get PDF
    Implementation attacks like side-channel and fault attacks are a threat to deployed devices especially if an attacker has physical access. As a consequence, devices like smart cards and IoT devices usually provide countermeasures against implementation attacks, such as masking against side-channel attacks and detection-based countermeasures like temporal or spacial redundancy against fault attacks. In this paper, we show how to attack implementations protected with both masking and detection-based fault countermeasures by using statistical ineffective fault attacks using a single fault induction per execution. Our attacks are largely unaffected by the deployed protection order of masking and the level of redundancy of the detection-based countermeasure. These observations show that the combination of masking plus error detection alone may not provide sufficient protection against implementation attacks

    Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study)

    Get PDF
    Purpose: Severely ill patients affected by coronavirus disease 2019 (COVID-19) develop circulatory failure. We aimed to report patterns of left and right ventricular dysfunction in the first echocardiography following admission to intensive care unit (ICU). Methods: Retrospective, descriptive study that collected echocardiographic and clinical information from severely ill COVID-19 patients admitted to 14 ICUs in 8 countries. Patients admitted to ICU who received at least one echocardiography between 1st February 2020 and 30th June 2021 were included. Clinical and echocardiographic data were uploaded using a secured web-based electronic database (REDCap). Results: Six hundred and seventy-seven patients were included and the first echo was performed 2 [1, 4] days after ICU admission. The median age was 65 [56, 73] years, and 71% were male. Left ventricle (LV) and/or right ventricle (RV) systolic dysfunction were found in 234 (34.5%) patients. 149 (22%) patients had LV systolic dysfunction (with or without RV dysfunction) without LV dilatation and no elevation in filling pressure. 152 (22.5%) had RV systolic dysfunction. In 517 patients with information on both paradoxical septal motion and quantitative RV size, 90 (17.4%) had acute cor pulmonale (ACP). ACP was associated with mechanical ventilation (OR > 4), pulmonary embolism (OR > 5) and increased PaCO2. Exploratory analyses showed that patients with ACP and older age were more likely to die in hospital (including ICU). Conclusion: Almost one-third of this cohort of critically ill COVID-19 patients exhibited abnormal LV and/or RV systolic function in their first echocardiography assessment. While LV systolic dysfunction appears similar to septic cardiomyopathy, RV systolic dysfunction was related to pressure overload due to positive pressure ventilation, hypercapnia and pulmonary embolism. ACP and age seemed to be associated with mortality in this cohort

    A study protocol for applying the co-creating knowledge translation framework to a population health study

    Get PDF
    BACKGROUND: Population health research can generate significant outcomes for communities, while Knowledge Translation (KT) aims to expressly maximize the outcomes of knowledge producing activity. Yet the two approaches are seldom explicitly combined as part of the research process. A population health study in Port Lincoln, South Australia offered the opportunity to develop and apply the co-KT Framework to the entire research process. This is a new framework to facilitate knowledge formation collaboratively between researchers and communities throughout a research to intervention implementation process. DESIGN: This study employs a five step framework (the co-KT Framework) that is formulated from engaged scholarship and action research principles. By following the steps a knowledge base will be cumulatively co-created with the study population that is useful to the research aims. Step 1 is the initiating of contact between the researcher and the study contexts, and the framing of the research issue, achieved through a systematic data collection tool. Step 2 refines the research issue and the knowledge base by building into it context specific details and conducting knowledge exchange events. Step 3 involves interpreting and analysing the knowledge base, and integrating evidence to inform intervention development. In Step 4 the intervention will be piloted and evaluated. Step 5 is the completion of the research process where outcomes for improvement will be instituted as regular practice with the facilitation of the community. In summary, the model uses an iterative knowledge construction mechanism that is complemented by external evidence to design interventions to address health priorities within the community. DISCUSSION: This is a systematic approach that operationalises the translational cycle using a framework for KT practice. It begins with the local context as its foundation for knowledge creation and ends with the development of contextually applicable interventions. It will be of interest to those involved in KT research, participatory action research, population health research and health care systems studies. The co-KT Framework is a method for embedding the principles of KT into all stages of a community-based research process, in which research questions are framed by emergent data from each previous stage.Kathryn Powell, Alison Kitson, Elizabeth Hoon, Jonathan Newbury, Anne Wilson and Justin Beilb

    Variation in Size and Growth of the Great Scallop Pecten maximus along a Latitudinal Gradient

    Get PDF
    Understanding the relationship between growth and temperature will aid in the evaluation of thermal stress and threats to ectotherms in the context of anticipated climate changes. Most Pecten maximus scallops living at high latitudes in the northern hemisphere have a larger maximum body size than individuals further south, a common pattern among many ectotherms. We investigated differences in daily shell growth among scallop populations along the Northeast Atlantic coast from Spain to Norway. This study design allowed us to address precisely whether the asymptotic size observed along a latitudinal gradient, mainly defined by a temperature gradient, results from differences in annual or daily growth rates, or a difference in the length of the growing season. We found that low annual growth rates in northern populations are not due to low daily growth values, but to the smaller number of days available each year to achieve growth compared to the south. We documented a decrease in the annual number of growth days with age regardless of latitude. However, despite initially lower annual growth performances in terms of growing season length and growth rate, differences in asymptotic size as a function of latitude resulted from persistent annual growth performances in the north and sharp declines in the south. Our measurements of daily growth rates throughout life in a long-lived ectothermic species provide new insight into spatio-temporal variations in growth dynamics and growing season length that cannot be accounted for by classical growth models that only address asymptotic size and annual growth rate
    corecore